Виды эцн. Конструкция и технические характеристики модулей уэцн. Погружной двигатель с гидрозащитой

Виды эцн. Конструкция и технические характеристики модулей уэцн. Погружной двигатель с гидрозащитой

Установка ЭЦН является сложной технической системой и, несмотря на широко известный принцип действия центробеж­ного насоса, представляет собой совокупность оригинальных по конструкции элементов. Принципиальная схема УЭЦН приведена на рис. 6.1. Установка состоит из двух частей: на­земной и погружной. Наземная часть включает автотрансфор­матор 1; станцию управления 2; иногда кабельный барабан 3 и оборудование устья скважины 4. Погружная часть включает колонну НКТ 5, на которой погружной агрегат спускается в скважину; бронированный трехжильный электрический кабель 6, по которому подается питающее напряжение погружному электродвигателю и который крепится к колонне НКТ специ­альными зажимами 7.

Погружной агрегат состоит из многоступенчатого цен­тробежного насоса 8, оборудованного приемной сеткой 9 и обратным клапаном 10. В комплект погружной установки вхо­дит сливной клапан 11 через который сливается жидкость из НКТ при подъеме установки. В нижней части насос сочленен с узлом гидрозащиты (протектором) 12, который, в свою очередь, сочленен с погружным электродвигателем 13. В нижней части электродвигатель 13 имеет компенсатор 14.

Жидкость поступает в насос через сетку, расположенную в его нижней части. Сетка обеспечивает фильтрацию пластовой жидкости. Насос подает жидкость из скважины в НКТ.

Установки ЭЦН в России разработаны для скважин с обсадными колоннами диаметром 127, 140, 146 и 168 мм. Для обсадных колонн размера 146 и 168 мм имеются погружные агрегаты двух габаритов. Один предназначен для скважин с наименьшим внутренним диаметром (по ГОСТу) обсадной колонны. В этом случае и агрегат ЭЦН имеет меньший диаметр, а, следовательно, и меньшие предельные величины рабочей характеристики (напор, подача, КПД).

Рис. 6.1. Принципиальная схема УЭЦН:

1 - автотрансформатор; 2 - станция управления; 3 - кабель­ный барабан; 4 - оборудование устья скважины; 5 - колонна НКТ; 6 - бронированный электрический кабель; 7 - зажимы для кабеля; 8 - погружной многоступенчатый центробежный насос; 9 - приемная сетка насоса; 10 - обратный клапан; 11 -сливной клапан; 12 -узел гидрозащиты (протектор); 13 - по­гружной электродвигатель; 14 - компенсатор

Каждая установка имеет свой шифр, например УЭЦН5А-500-800, в котором приняты следующие обозначения цифра (или цифра и буква) после УЭЦН обозначает наименьший до­пустимый внутренний диаметр обсадной колонны, в которую он может быть спущен, цифра «4» соответствует диаметру 112 мм, цифра «5» соответствует 122 мм, «5А» - 130 мм, «6» - 144 мм и «6А» - 148 мм; второе число шифра обозначает номинальную подачу насоса (в м 3 /сУ т) и третье - примерный напор в м. Зна­чения подачи и напора даны для работы на воде.

В последние годы номенклатура выпускаемых установок центробежных насосов значительно расширилась, что нашло отражение и в шифрах выпускаемого оборудования. Так, уста­новки ЭЦН, выпускаемые фирмой АЛНАС (г. Альметьевск, Татарстан), в шифре имеют заглавную букву «А» после надписи «УЭЦН», а установки Лебедянского механического завода (АО «Лемаз», г. Лебедянь Курской обл.) имеют заглавную букву «Л» перед надписью «УЭЦН». Установки центробежных насосов с двухопорной конструкцией рабочего колеса, предназначенных для отбора пластовой жидкости с большим количеством меха­нических примесей имеют в своем шифре «2» после буквы «Л» и перед надписью УЭЦН (для насосов фирмы «Лемаз»), букву «Д» после надписи «УЭЦН» (для насосов «АО «Борец»), букву «А» перед цифрой габарита установки (для насосов АЛНАС). Коррозионностойкое исполнение УЭЦН отражается буквой «К» в конце шифра установки, термостойкое - буквой «Т». Конструкция рабочего колеса с дополнительными вихревыми лопатками на заднем диске (фирма «Новомет», г. Пермь) имеет в шифре насоса буквенное обозначение ВННП.

6.3. Основные узлы установки ЭЦН, их назна­чение и характеристика

Скважинные центробежные насосы

Скважинные центробежные насосы являются многоступен­чатыми машинами. Это обусловлено в первую очередь малыми значениями напора, создаваемым одной ступенью (рабочим ко­лесом и направляющим аппаратом). В свою очередь небольшие значения напора одной ступени (от 3 до 6-7 м водяного столба) определяются малыми величинами внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной ко­лонны и размерами применяемого скважинного оборудования - кабеля, погружного двигателя и т.д.

Конструкция скважинного центробежного насоса может быть обычной и износостойкой, а также повышенной коррози­онной стойкости. Диаметры и состав узлов насоса в основном одинаковы для всех исполнений насоса.

Скважинный центробежный насос обычного исполнения предназначен для отбора из скважины жидкости с содержанием воды до 99%. Механических примесей в откачиваемой жидко­сти должно быть не более 0,01 массовых % (или 0,1 г/л), при этом твердость механических примесей не должна превышать 5 баллов по Моосу; сероводорода - не более 0,001%. По требова­ниям технических условий заводов-изготовителей, содержание свободного газа на приеме насоса не должно превышать 25%.

Центробежный насос коррозионностойкого исполнения предназначен для работы при содержании в откачиваемой пластовой жидкости сероводорода до 0,125% (до 1,25 г/л). Износостойкое исполнение позволяет откачивать жидкость с содержанием механических примесей до 0,5 г/л.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

Рис. 6.2. Схема скважинного центробежного насоса:

1 - кольцо с сегментами; 2,3- гладкие шайбы; 4,5- шайбы амортизаторы; 6 - верхняя опора; 7 - нижняя опора; 8 - пру­жинное кольцо опоры вала; 9 - дистанционная втулка; 10 -основание; 11 - шлицевая муфта.

Модульные ЭЦН

Для создания высоконапорных скважинных центробежных насосов в насосе приходится устанавливать множество ступеней (до 550). При этом они не могут разместиться в одном корпусе, поскольку длина такого насоса (15-20 м) затрудняет транспор­тировку, монтаж на скважине и изготовление корпуса.

Высоконапорные насосы составляются из нескольких сек­ций. Длина корпуса в каждой секции не более 6 м. Корпусные детали отдельных секций соединяются фланцами с болтами или шпильками, а валы шлицевыми муфтами. Каждая секция насо­са имеет верхнюю осевую опору вала, вал, радиальные опоры вала, ступени. Приемную сетку имеет только нижняя секция. Ловильную головку - только верхняя секция насоса. Секции высоконапорных насосов могут иметь длину меньшую, чем 6 м (обычно длина корпуса насоса составляет 3,4 и 5 м), в зависи­мости от числа ступеней, которые надо в них разместить.

Насос состоит из входного модуля (рис. 6.4), модуля секции (модулей-секций) (рис. 6.3), модуля головки (рис. 6.3), обрат­ного и спускного клапанов.

Допускается уменьшить число модулей-секций в насосе, соответственно укомплектовав погружной агрегат двигателем необходимой мощности.

Соединения модулей между собой и входного модуля с двигателем фланцевые. Соединения (кроме соединения входного модуля с двигателем и входного модуля с газосепа­ратором) уплотняют резиновыми кольцами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляют с помощью шлицевых муфт.

Валы модулей-секций всех групп насосов, имеющих одина­ковые длины корпусов 3,4 и 5 м, унифицированы. Для защиты кабеля от повреждений при спускоподъемных операциях на основаниях модуля-секции и модуля-головки расположены съемные стальные ребра. Конструкция насоса позволяет без дополнительной разборки использовать модуль насосный газосепаратор, который устанавливается между модулем вход­ным и модулем-секцией.

Технические характеристики некоторых типоразмеров ЭЦН для добычи нефти, изготавливаемых российскими фир­мами по техническим условиям представлены в таблице 6.1 и рис. 6.6.

Назначение и технические данные УЭЦН.

Установки погружных центробежных насосов предназначены для откачки из нефтяных скважин, в том числе и наклонных пластовой жидкости, содержащей нефть, воду и газ, и механические примеси. В зависимости от количества различных компонентов, содержащихся в откачиваемой жидкости, насосы установок имеют исполнение обычное и повышенной корозионно-износостойкости. При работе УЭЦН, где в откачиваемой жидкости концентрация мехпримесей превышает допустимую 0,1 грамм\литр происходит засорение насосов, интенсивной износ рабочих агрегатов. Как следствие, усиливается вибрация, попадание воды в ПЭД по торцевым уплотнениям, происходит перегрев двигателя, что приводит к отказу работы УЭЦН.

Условное обозначение установок:

УЭЦН К 5-180-1200, У 2 ЭЦН И 6-350-1100,

Где У – установка, 2 –вторая модификация, Э – с приводом от погружного электродвигателя, Ц – центробежный, Н – насос, К – повышенный коррозионостойкости, И – повышенной износостойкости, М – модульного исполнения, 6 – группы насосов, 180, 350 – подача м\сут, 1200, 1100 – напор, м.в.ст.

В зависимости от диаметра эксплуатационной колонны, максимального поперечного габарита погружного агрегата, применяют ЭЦН различных групп – 5,5, а 6. Установка группы 5 с поперечным диаметром не менее 121,7 мм. Установки группы 5 а с поперечным габаритом 124 мм – в скважинах внутренним диаметром не менее 148,3 мм. Насосы также подразделяют на три условные группы – 5,5 а, 6. Диаметры корпусов группы 5 – 92 мм, группы 5 а – 103 мм, группы 6 – 114 мм. Технические характеристики насосов типа ЭЦНМ и ЭЦНМК приведены в приложении 1.

Состав и комплектность УЭЦН

Установка УЭЦН состоит из погружного насосного агрегата (электродвигателя с гидрозащитой и насоса), кабельной линии (круглого плоского кабеля с муфтой кабельного ввода), колонны НКТ, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (комплектного устройства) (см. рисунок 1.1.). Трансформаторная подстанция преобразует напряжение промысловой сети дооптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле. Станция управления обеспечивает управление работой насосных агрегатов и его защиту при оптимальных режимах.

Погружной насосный агрегат, состоящий из насоса и электродвигателя с гидрозащитой и компенсатора, опускается в скважину по НКТ. Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Кабель крепится к НКТ, металлическими колесами. На длине насоса и протектора кабель плоский, прикреплен к ним металлическим колесами и защищен от повреждений кожухами и хомутами. Над секциями насоса устанавливаются обратный и сливной клапаны. Насос откачивает жидкость из скважины и подает ее на поверхность по колонне НКТ (см. рисунок 1.2.)

Оборудование устья скважины обеспечивает подвеску на фланце обсадной колонны НКТ с электронасосом и кабелем, герметизацию труб и кабеля, а также отвод добываемой жидкости в выходной трубопровод.

Насос погружной, центробежный, секционный, многоступенчатый не отличается по принципу действия от обычных центробежный насосов.

Отличие его в том, что он секционный, многоступенчатый, с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Выпускаемые для нефтяной промышленности погружные насосы содержат от 1300 до 415 ступеней.

Секции насоса, связанные фланцевыми соединениями, представляют собой металлический корпус. Изготовленный из стальной трубы длиной 5500 мм. Длина насоса определяется числом рабочих ступеней, число которых, в свою очередь, определяется основными параметрами насоса. – подачей и напором. Подача и напор ступеней зависят от поперечного сечения и конструкции проточной части (лопаток), а также от частоты вращения. В корпусе секций насоса вставляется пакет ступеней представляющих собой собрание на валу рабочих колес и направляющих аппаратов.

Рабочие колеса устанавливаются на валу на призматической шпонке по ходовой посадке и могут перемещаться в осевом направлении. Направляющие аппараты закреплены от поворота в корпусе ниппеля, расположенным в верхней части насоса. Снизу в корпус ввинчивают основание насоса с приемными отверстиями и фильтром, через которые жидкость из скважины поступает к первой ступени насоса.

Верхний конец вала насоса вращается в подшипниках сальника и заканчивается специальной пяткой, воспринимающей нагрузку на вал и его вес через пружинное кольцо. Радиальные усилия в насосе воспринимаются подшипниками скольжения, устанавливаемыми в основании ниппеля и на валу насоса.

В верхней части насоса находится ловильная головка, в которой устанавливается обратный клапан и к которой крепится НКТ.

Электродвигатель погружной, трехфазовый, асинхронный, маслозаполненный с короткозамкнутым ротором в обычном исполнении и коррозионностойком исполнениях ПЭДУ (ТУ 16-652-029-86). Климатическое исполнение – В, категория размещения – 5 по ГОСТ 15150 – 69. В основании электродвигателя предусмотрены клапан для закачки масла и его слива, а также фильтр для очистки масла от механических примесей.

Гидрозащита ПЭД состоит из протектора и компенсатора. Она предназначена для предохранения внутренней полости электродвигателя от попадания пластовой жидкости, а также компенсации температурных изменений объемов масла и его расхода. (см. рисунок 1.3.)

Протектор двухкамерный, с резиновой диафрагмой и торцевыми уплотнениями вала, компенсатор с резиновой диафрагмой.

Кабель трехжильный с полиэтиленовой изоляцией, бронированный. Кабельная линия, т.е. кабель намотанный на барабан, к основанию которого присоединен удлинитель – плоский кабель с муфтой кабельного ввода. Каждая жила кабеля имеет слой изоляции и оболочку, подушки из прорезиненной ткани и брони. Три изолированные жилы плоского кабеля уложены параллельно в ряд, а круглового скручены по винтовой линии. Кабель в сборе имеет унифицированную муфту кабельного ввода К 38, К 46 круглого типа. В металлическом корпусе муфты герметично заделаны с помощью резинового уплотнения, к токопроводящим жилам прикреплены наконечники.

Конструкция установок УЭЦНК, УЭЦНМ с насосом имеющим вал и ступени, выполненные из коррозионностойких материалов, и УЭЦНИ с насосом, имеющим пластмассовые рабочие колеса и резинометаллические подшипники аналогична конструкция установок УЭЦН.

При большом газовом факторе применяют насосные модули – газосепараторы, предназначенные для уменьшения объемного содержания свободного газа на приеме насоса. Газосепараторы соответствуют группе изделий 5, виду 1 (восстанавливаемые) по РД 50-650-87, климатическое исполнение - В, категория размещения – 5 по ГОСТ 15150-69.

Модули могут быть поставлены в двух исполнениях:

Газосепараторы: 1 МНГ 5, 1 МНГ5а, 1МНГ6 – обычного исполнения;

Газосепараторы 1 МНГК5, МНГ5а – повышенной коррозионной стойкости.

Модули насосные устанавливаются между входным модулем и модулем-секцией погружного насоса.

Погружной насос, электродвигатель, и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

Комплектующие подъемы и оборудование установок ЭЦН приведены в приложении 2.

Технические характеристика ПЭД

Приводом погружных центробежных насосов служит специальный маслозаполненный погружной ассинхронный электродвигатель трехфазного переменного тока с короткозамкнутым ротором вертикального исполнения типа ПЭД. Электродвигатели имеют диаметры корпусов 103, 117, 123, 130, 138 мм. Поскольку диаметр электродвигателя ограничен, при больших мощностях двигатель имеет большую длину, а в некоторых случаях выполнения секционным. Так как электродвигатель работает погруженным в жидкость и часто под большим гидростатическим давлением, основное условие надежной работы – его герметичность (см. рисунок 1.3).

ПЭД заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим как для охлаждения, так и для смазки деталей.

Погружной электродвигатель состоит из статора, ротора, головки, основания. Корпус статора изготавливается из стальной трубы, на концах которой предусмотрена резьба для подсоединения головки и основания двигателя. Магнитопровод статора собирается из активных и немагнитных шихтованных жестей, имеющих пазы, в которых располагаются обмотка. Обмотка статора может быть однослойной, протяжной, катушечной или двухслойной, стержневой, петлевой. Фазы обмотки соединены.

Активная часть магнитопровода совместно с обмоткой создает в электродвигателей вращающееся магнитное поле, а немагнитная часть служит опорами для промежуточных подшипников ротора. К концам обмотки статора припаивают выводные концы, изготовленные из многожильной медного провода с изоляцией, имеющий высокую электрическую и механическую прочность. К концам припаивают штежельные гильзы, в которые входят наконечники кабеля. Выводные концы обмотки соединяют с кабелем через специальную штежельную колодку (муфту) кабельного ввода. Токоввод двигателя может быть и ножевого типа. Ротор двигателя короткозамкнутый, многосекционный. В его состав входят вал, сердечники (пакеты ротора), радиальные опоры (подшипники скольжения). Вал ротора выполнен из пустотелой калиброванной стали, сердечники из листовой электротехнической стали. Сердечники набираются на вал, чередуясь с радиальными подшипниками, и соединены с валом шпонками. Набор сердечников на валу затянуть в осевом направлении гайками или турбинкой. Турбинка служит для принудительной циркуляции масла для выравнивания температуры двигателя на длине статора. Для обеспечения циркуляции масла на погружной поверхности магнитопровода имеются продольные пазы. Масло циркуляцией через эти пазы, фильтра в нижней части двигателя, где оно очищается, и через отверстие в валу. В головке двигателя расположены пята и подшипник. Переводник в нижней части двигателя служит для размещения фильтра, перепускного клапана и клапана для закачки масла в двигатель. Электродвигатель секционного исполнения состоит из верхней и нижней секций. Каждая секция имеет такие же основные узлы. Технические характеристики ПЭД приведены в приложении 3.

Основные технические данные кабеля

Подвод электроэнергии к электродвигателю установки погружного насоса осуществляется через кабельную линию, состоящую из питающего кабеля и муфты кабельного ввода для сочленения с электродвигателем.

В зависимости от назначения в кабельную линию могут входить:

Кабель марок КПБК или КППБПС – в качестве основного кабеля.

Кабель марки КПБП (плоский)

Муфта кабельного ввода круглая или плоская.

Кабель КПБК состоит из медных однопроволочных или многопроволочных жил, изолированных в два слоя полиэтиленом высокой прочности и скрученных между собой, а также подушки и брони.

Кабели марок КПБП и КППБПС в общей шланговой оболочке состоят из медных однопроволочных и многопроволочных жил, изолированных полиэтиленом высокой плотности и уложенных в одной плоскости, а так же из общей шланговой оболочке, подушки и брони.

Кабели марки КППБПС с отдельно отшлангованными жилами состоят из медных одно-,многопроволочных жил, изолированных в два слоя полиэтилена высокого давления и уложенных в одной плоскости.

Кабель марки КПБК имеет:

Рабочее напряжение В – 3300

Кабель марки КПБП имеет:

Рабочее напряжение, В - 2500

Допустимое давление пластовой жидкости, МПа – 19,6

Допустимый газовый фактор, м/т – 180

Кабель марки КПБК и КПБП имеет допустимые температуры окружающей среды от 60 до 45 С воздуха, 90 С – пластовой жидкости.

Температуры кабельных линий приведены в приложении 4.

1.2.Краткий обзор отечественных схем и установок.

Установки погружных центробежных насосов предназначены для откачивания нефтяных скважин, в том числе наклонных, пластовой жидкости, содержащей нефть и газ, и механической примеси.

Установки выпускаются двух видов – модульные и немодульные; трех исполнений: обычное, коррозионостойкое и повышенной износостойкости. Перекачиваемая среда отечественных насосов должна иметь следующие показатели:

· пластовая дикость – смесь нефти, попутной воды и нефтяного газа;

· максимальная кинематическая вязкость пластовой жидкости 1 мм\с;

· водородный показатель попутной воды рН 6,0-8.3;

· максимальное содержание полученной воды 99%;

· свободного газа на приеме до 25%, для установок с модулями – сепараторами до 55%;

· максимальная температура добываемой продукции до 90С.

В зависимости от поперечных размеров применяемых в комплекте установок погружных центробежных электронасосов, элетродвигателей и кабельных линий установки условно делятся на 2 группы 5 и 5 а. С диаметрами обсадных колонн 121.7 мм; 130 мм; 144,3 мм соответственно.

Установка УЭЦ состоит из погружного насосного агрегата, кабеля в сборе, наземного электрооборудования – трансформаторной комилентной подстанции. Насосный агрегат состоит из погружного центробежного насоса и двигателя с гидрозащитой, спускается в скважину на колонне НКТ. Насос погружной, трехфазный, асинхронный, маслозаполненный с ротором.

Гидрозащита состоит из протектора и компенсатора. Кабель трехжильный с полиэтиленовой изоляцией, бронированный.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

1.2.2. Погружной центробежный насос.

Погружной центробежный насос по принципу действия не отличается от обычных центробежных насосов, применяемых для перекачки жидкости. Отличие в том, что он многосекционный с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Рабочие колеса и направляющие аппараты насосов обычного исполнения изготавливают из модифицированного серого чугуна, насосов коррозионностойких – чугуна типа «нирезист», износостойких колес – их полиамидных смол.

Насос состоит из секций, число которых зависит от основных параметров насоса – напора, но не более четырех. Длина секции до 5500 метров. У модульных насосов состоит из входного модуля, модуля – секции. Модуль – головки, обратного и спускного клапанов. Соединение модулей между собой и входного модуля с двигателем – фланцевое соединение (кроме входного модуля, двигателем или сепаратором) уплотняются резиновыми манжетами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляется шлицевыми муфтами. Валы модулей-секций всех групп насосов имеющих одинаковые длины корпусов унифицированы по длине.

Модуль-секция состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего и нижнего подшипников, верхней осевой опоры, головки, основания, двух ребер и резиновых колец. Ребра предназначены для защиты плоского кабеля с муфтой от механических повреждений.

Входной модуль состоит из основания с отверстиями для прохода пластовой жидкости, подшипниковых втулок и сетки, вала с защитными втулками и шлицевой муфтой, предназначенной для соединения вала модуля с валом гидрозащиты.

Модуль-головка состоит из корпуса, с одной стороны которого имеется внутренняя коническая резьба для подсоединения обратного клапана, с другой стороны – фланец для подсоединения к модулю-секции, двух ребер и резинового кольца.

В верхней части насоса имеется ловильная головка.

Отечественной промышленностью выпускаются насосы с подачей (м/сут):

Модульные – 50,80,125,200.160,250,400,500,320,800,1000.1250.

Немодульные – 40.80,130.160,100,200,250,360,350,500,700,1000.

Следующих напоров (м) - 700, 800, 900, 1000, 1400, 1700, 1800, 950, 1250, 1050, 1600, 1100, 750, 1150, 1450, 1750, 1800, 1700, 1550, 1300.

1.2.3. Погружные электродвигатели

Погружные электродвигатели состоят из электродвигателя и гидрозащиты.

Двигатели трехфазные, ассинхронные, короткозамкнутые, двухполюсные, погружные, унифицированной серии. ПЭД в нормальном и коррозионном исполнениях, климатического исполнения В, категории размещения 5, работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 С содержащей:

· мехпримесей не более 0.5 г/л;

· свободного газа не более 50%;

· сероводорода для нормальных, не более 0.01 г/л, коррозионностойких до 1,25 г/л;

Гидрозащитное давление в зоне работы двигателя не более 20 МПа. Электродвигатели заполняются маслом с пробивным напряжением не менее 30 КВ. Предельная длительно допускаемая температура обмотки статора электродвигателя (для двигателя с диаметром корпуса 103 мм) равна 170 С, остальных электродвигателей 160 С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего, мощностью от 63 до 630 КВт) и протектора. Электродвигатель состоит из статора, ротора, головки с токовводом, корпуса.

1.2.4. Гидрозащита электродвигателя.

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса. Существует несколько вариантов гидрозащиты: П, ПД, Г.

Гидрозащиту выпускают обычного и коррозионностойкого исполнений. Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 21 г/см, обладающий физико-химическими свойствами с пластовой жидкостью и маслом.

Гидрозащита состоит из двух камер сообщенных трубкой. Изменение объемов жидкого диэлектрика в двигателе компенсируется перетоком барьерной жидкости из одной камеры в другую. В гидрозащите закрытого типа применяются резиновые диафрагмы. Их эластичность компенсирует изменение объема масла.

24. Условие фонтанирования скважин, определение энергии и удельного расхода газа при работе газожидкостного подъёмника.

Условия фонтанирования скважин .

Фонтанирование скважин происходит в том случае, если перепад давления между пластовым и забойным будет достаточным для преодоления противодавления столба жидкости и потерь давления на трение, тоесть фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газа. Большинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно.

Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа расстворено в нефти, тем меньше будет плотность смеси и тем выше поднимается уровень жидкости. Достигнув устья, жидкость переливается, и скважина начинает фонтанировать. Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:

Рс = Рг+Ртр+ Ру; где

Рс - давление на забое, РГ, Ртр, Ру - гидростатическое давление столба жидкости в скважине, расчитанное по вертикали, потери давления на трение в НКТ и противодавление на устье, соответственно.

Различают два вида фонтанирования скважин:

· Фонтанирование жидкости, не содержащей пузырьки газа - артезианское фонтанирование.

· Фонтанирование жидкости, содержащей пузырьки газа облегчающего фонтанирование - наиболее распространенный способ фонтанирования.

Погружные электроцентробежные насосы - это многоступенчатые центробежные насосы (имеющие до 120 ступеней), приводимые во вращение погружным электродвигателем ПЭД. Питание подводится к электродвигателю с поверхности по кабелю от повышающего автотрансформатора или трансформатора через станцию управления, в которой сосредоточена вся контрольно-измерительная аппаратура и автоматика. Установка ЭЦН опускается в скважину на 150 - 300 м ниже расчетного динамического уровня. Жидкость поднимается на поверхность по НКТ, к внешней стороне которых прикреплен специальными поясками кабель. В насосном агрегате между самим насосом и электродвигателем имеется промежуточное звено, называемое протектором или гидрозащитой. Установка ЭЦН включает в себя следующие элементы (рисунок 3.1): многоступенчатый центробежный насос (1); звено гидрозащиты или протектор (2); маслозаполненный электродвигатель ПЭД (3); бронированный трехжильный кабель (4); обратный клапан (5); спускной клапан (6); трансформатор или автотрансформатор (7); станцию управления (8) .

Рис.3.1.

  • 1 - погружной центробежный насос; 2 - гидрозащита (протектор);
  • 3 - погружной электродвигатель; 4 - электрический кабель;
  • 5 - обратный клапан; 6 - спускной клапан; 7 - трансформатор; 8 - СУ

Насос, протектор и электродвигатель являются отдельными узлами, соединяемыми болтовыми шпильками. Концы валов имеют шлицевые соединения, которые стыкуются при сборке всей установки. При необходимости подъема жидкости с больших глубин секции ЭЦН соединяются друг с другом так, что общее число ступеней достигает 400. Всасываемая насосом жидкость последовательно проходит все ступени и приобретает напор, равный внешнему гидравлическому сопротивлению. Установки ЭЦН отличаются относительно низкой металлоемкостью, широким диапазоном рабочих характеристик как по напору, так и по расходу, достаточно высоким КПД, возможностью откачки больших объемов жидкости и большим межремонтным периодом.

На рисунке 3.2, а, показана одна ступень ЭЦН, а на рисунке 3.2, б, соединение ступеней.


Рис.3.2.

а - одиночная ступень; б - соединение ступеней в секцию ЭЦН

На рисунке 3.3 показан разрез ЭЦН, а на рисунке 3.4 - насос типа ЭЦНМИК.

В шифре ЭЦН заложены их основные номинальные параметры, такие как подача и напор при работе на оптимальном режиме. Например, ЭЦН5-40-950 означает центробежный электронасос группы 5 с подачей 40 м 3 /сут (по воде) и напором 950 м.

Рис. 3.3.

1 - компрессионно-диспергирующая ступень; 2 - шнек; 3 - обойма; 4 - радиально-упорный подшипник


Рис. 3.4.

В шифре насосов буква «И» означает износостойкость. В износостойких насосах рабочие колеса изготавливаются не из металла, а из полиамидной смолы. В корпусе насоса примерно через каждые 20 ступеней устанавливаются промежуточные резинометаллические центрирующие вал подшипники, в результате чего насос износостойкого исполнения имеет меньше ступеней и соответственно напор.

Все типы насосов имеют паспортную рабочую характеристику в виде кривых зависимостей Н=ДС)) (напор, подача), /;=ДС>) (КПД, подача), N=f (0) (потребляемая мощность, подача). Обычно эти зависимости даются в диапазоне рабочих значений расходов или в несколько большем интервале (рисунок 3.5). Характеристики большого числа насосов могут быть найдены на интернет- сайтах производителей насосного оборудования .


Рис. 3.5.

Всякий центробежный насос, в том числе и ЭЦН, может работать при закрытой выкидной задвижке (точка А: 0=0; Н=Н тах) и без противодавления на выкиде (точка В: 0=0 тах; Н=0). Поскольку полезная работа насоса пропорциональна произведению подачи на напор, то для этих двух крайних режимов работы насоса полезная работа будет ровна нулю, а следовательно, и КПД будет равен нулю. При определенном соотношении Р и Н, обусловленном минимальными внутренними потерями насосом, КПД достигает максимального значения, равного примерно 0,5 - 0,6. Обычно насосы с малой подачей и малым диаметром рабочих колес, а так же с большим числом ступеней имеют пониженный КПД. Подача и напор, соответствующие максимальному КПД, называются оптимальным режимом работы насоса. Зависимость /7=ДР), около своего максимума уменьшается плавно, поэтому вполне допустима работа ЭЦН при режимах, отличающихся от оптимального в ту или другую сторону на некоторую величину. Пределы этих отклонений зависят от конкретной характеристики ЭЦН и должны соответствовать разумному снижению КПД насоса (на 3...5 %).

Это обуславливает целую область возможных режимов работы ЭЦН, которая называется рекомендованной областью (рисунок 3.5, штриховка).

Подбор насоса к скважинам по существу сводится к выбору такого типоразмера ЭЦН, чтобы он, будучи спущен в скважину, работал в условиях оптимального или рекомендованного режима при откачке заданного дебита скважины с данной глубины .

Напор, который может преодолеть насос, прямо пропорционален числу ступеней. Развиваемый одной ступенью при оптимальном режиме работы, он зависит, от размеров рабочего колеса, которые зависят в свою очередь от радиальных габаритов насоса.

Устройство ПЭД завода «Борец» в разрезе изображено на рисунке 3.6. В таблице 3.1 приведены технические характеристики ПЭД.

Электроэнергия подается к ПЭД по трехжильному кабелю, спускаемому в скважину параллельно НКТ (рисунок 3.7). Кабель крепится к внешней поверхности НКТ металлическими поясками по два на каждую трубу. Кабель работает в тяжелых условиях. Верхняя его часть находится в газовой среде, иногда под значительным давлением, нижняя - в нефти и подвергается еще большему давлению. При спуске и подъеме насоса, особенно в искривленных скважинах, кабель подвергается сильным механическим воздействиям (прижимы, трение, заклинивание между колонной и НКТ и так далее). По кабелю передается электроэнергия при высоких напряжениях. Использование высоковольтных двигателей позволяет уменьшить ток и, следовательно, диаметр кабеля. Однако кабель для питания высоковольтного ПЭД должен обладать и более надежной, а иногда и более толстой изоляцией. Все кабели, применяемые для ЭЦН, сверху покрыты эластичной стальной оцинкованной лентой для защиты от механических повреждений. Кабели могут быть круглого и плоского сечения.

Рис. 3.6.

Таблица 3.1

Технические характеристики асинхронных ПЭД

Тип двигателя

Мощность, кВт

Габаритный размер, мм

Линейное напряжение, В

Ток, А

сое ф

КПД, %

Темп. окр. среды, °С, не более

ПЭД16-103БВ5

ПЭД22-103БВ5

ПЭД32-103БВ5

ПЭД45-103БВ5

ПЭДС63-103БВ5

ПЭДС90-103БВ5

ПЭД45-117БВ5

ПЭД63-117БВ5

ПЭДС90-117БВ5

ПЭДС125-П7БВ5

ПЭД63-123БВ5

ПЭД 125-123 БВ5

ПЭДС250-123БВ5

ПЭДС180-130ЛВ5

ПЭДС250-130ЛВ5

Рис.3.7.

1 - жила; 2 - изоляция; 3 - оболочка; 4 - оплетка; 5 - броня

Круглый кабель крепится к НКТ, а плоский - только к нижним трубам колонны НКТ и к насосу. Переход от круглого кабеля к плоскому сращивается методом горячей вулканизации в специальных пресс-формах и при недоброкачественном выполнении такой сростки может служить источником нарушения изоляции и отказов. В последнее время переходят только к плоским кабелям, идущим от ПЭД вдоль колонны НКТ до станции управления. Однако изготовление таких кабелей сложнее, чем круглых.

Круглые кабели имеют резиновую (нсфтсстойкая резина) или полиэтиленовую изоляцию, что отображено в шифре: КРБК означает кабель резиновый бронированный круглый или КРБП - кабель резиновый бронированный плоский. При использовании полиэтиленовой изоляции в шифре вместо буквы Р пишется П: КПБК - для круглого кабеля и КПБП - для плоского.

Кабельный ввод является одним из важнейших элементов установки ПЭД, так как именно этот узел обеспечивает герметичность электродвигателя. Место кабельного ввода в ПЭД показано на рисунке 3.8.

Рис.3.8.

Все кабели имеют броню из волнистой оцинкованной стальной ленты, что придает им нужную прочность.

Кабели обладают активным и реактивным сопротивлением. Активное сопротивление зависит от сечения кабеля и варьируется в пределах от 0,6 до 1,32 Ом/км.

Реактивное сопротивление зависит от коэффициента мощности сов^ (при его значении 0,86 - 0,9 составляет примерно 0,1 Ом/км).

В кабеле ПЭД имеют место значительные потери электрической мощности, обычно от 3 до 15% общих потерь в установке . Потери мощности связаны с падением напряжения в кабеле. Эти потери напряжения, зависящие от тока, температуры кабеля, его сечения, вычисляются по обычным формулам электротехники и составляют примерно от 25 до 125 В/км . Поэтому на устье скважины напряжение, подаваемое к кабелю, всегда должно быть выше на величину потерь по сравнению с номинальным напряжением ПЭД. Возможности такого повышения напряжения предусмотрены в автотрансформаторах или трансформаторах, имеющих для этой цели в обмотках несколько дополнительных отводов.

Первичные обмотки трехфазных трансформаторов и автотрансформаторов рассчитаны на напряжение промысловой электросети, обычно 0,4 кВ, к которой они и подсоединяются через станции управления. Вторичные обмотки рассчитаны на рабочее напряжение погружного двигателя. Эти рабочие напряжения в различных ПЭД изменяются от 350 до 3000 В. Для компенсации падения напряжения в питающем кабеле от вторичной обмотки трансформатора делаются 6 (иногда 8) отводов, позволяющих регулировать напряжение на концах вторичной обмотки с помощью перестановки перемычек. Перестановка перемычки на одну ступень повышает напряжение на 30...60 В в зависимости от типа трансформатора.

Все трансформаторы и автотрансформаторы немаслозаполненные с воздушным охлаждением, закрыты металлическим кожухом и предназначены для установки в укрытом месте.

Трансформаторы, в отличии от автотрансформаторов, позволяют производить непрерывный контроль сопротивления изоляции вторичной обмотки трансформатора, кабеля и статорной обмотки ПЭД. При уменьшении сопротивления изоляции до установленной величины (ниже 30 кОм) установка автоматически отключается.

При использовании автотрансформаторов, имеющих прямую электрическую связь между первичной и вторичной обмотками, такой контроль изоляции осуществлять невозможно.

Существует большое количество специфических установок ЭЦН, предназначенных для одновременной работы в скважине с другими насосами, для добычи воды. ПЭД также могут использоваться не только с ЭЦН, но и для приво- да насосов других типов: винтовых, диафрагменных. Погружные центробежные насосы применяются не только для эксплуатации нефтедобывающих скважин.

Вот некоторые примеры использования ЭЦН:

  • - в водозаборных и артезианских скважинах для снабжения технической водой систем ППД и для бытовых целей (обычно это насосы с большими подачами, но с малыми напорами);
  • - в системах ППД при использовании пластовых высоконапорных вод при оборудовании водозаборных скважин с непосредственной закачкой воды в соседние нагнетательные скважины (подземные кустовые насосные станции, для этих целей используются насосы с внешним диаметром 375 мм, подачей до 3000 м 3 /сут и напором до 2000 м);
  • - для внутрипластовых систем поддержания пластового давления при закачке воды из нижнего водоносного пласта в верхний нефтяной или из верхнего водоносного в нижний нефтяной через одну скважину (используются так называемые перевернутые насосные установки, у которых в верхней части расположен двигатель, затем гидрозащита и в самом низу сам центробежный насос);
  • - специальные компоновки насоса в корпусах и с каналами перетока для одновременной, но раздельной эксплуатации двух и более пластов одной скважины (такие конструкции по существу являются приспособлениями известных элементов стандартной установки погружного насоса для работы в скважине в сочетании с другим оборудованием: газлифт, ШГН, фонтан, ЭЦН);
  • - специальные установки погружных центробежных насосов на кабель- канате. Стремление увеличить радиальные габариты ЭЦН и улучшить его технические характеристики, а также стремление упростить спускоподъемные работы при замене ЭЦН привели к созданию установок, спускаемых в скважину на специальном кабель-канате. Кабель-канат выдерживает нагрузку 100 кН. Он имеет сплошную двухслойную (крест на крест) наружную оплетку из прочных стальных проволок, обвитых вокруг электрического трехжильного кабеля, с помощью которого осуществляется питание ПЭД.

На более чем 60 процентах нефтедобывающих скважин для производства изначально определенных извлекаемых запасов необходимо применение той или иной технологии механизированной добычи. Из приблизительно 832000 скважин с механизированной добычей в мире, примерно 14 процентах эксплуатировались или эксплуатируются с использованием ЭЦН .

Механизированные способы добычи являются неотъемлемой частью эксплуатации скважин, в особенности на месторождениях поздней стадии разработки, где продуктивные пласты не обладают достаточным давлением для подъема нефти на устье. По мере того как дебиты скважины по газу и нефти продолжают снижаться, а дебит по воде растет, в частности в пластах с водонапорным режимом, нефтедобывающая компания может начать использовать заводнение - метод повышения нефтеотдачи при котором вода закачивается в пласт через водонагнетательную скважину для перемещения углеводородов к другим скважинам.

При этом со временем дебит скважины по нефти продолжит снижаться, а дебит по воде будет расти. В результате, время откачки, к примеру, для станка-качалки растет до того момента, пока насос не станет работать двадцать четыре часа в сутки. В это время, наиболее практичным методом увеличения добычи является установка насоса с большей производительностью.

Одним из приемлемых вариантов, в особенности при операциях заводнения с применением больших объемов, является погружной насос с электроприводом. Системы ЭЦН могут быть наилучшим вариантом для высокодебитных скважин, на которых произошло падение уровня добычи и существует необходимость его повышения. Эта задача актуальна для многих месторождениях в Российской федерации и странах СНГ. Старые системы газлифта в условиях сильного обводнения могут работать при более низких давлениях и обеспечить более полный отбор извлекаемых запасов нефти, если затратить средства на перевод этих скважин на ЭЦНы.

Из всех систем механизированной добычи электрические центробежные насосы (ЭЦН) обеспечивают наибольшую отдачу на наиболее глубоких скважинах, но вместе с тем их применение требует более частых ремонтов и соответствующего увеличения затрат. В добавок, ЭЦН обеспечивают превосходные рабочие характеристики в средах насыщенных газом и водой. Газ и вода присутствуют естественным образом в сырой нефти в больших объемах. Для возможности откачки нефти на устье необходимо отделить от нее газ и воду. Высокое их содержание может вызвать газовые пробки в механизме насоса, что приведет к значительному снижению производительности и потребуется извлечение из скважины всей насосно-компрессорной колонны и повторной ее заправки.

Технология электрических центробежных насосов

На большинстве нефтяных месторождений на стадии эксплуатации для откачки нефти на устье используются скважинные насосы, которые имеют электропривод. Насос как правило включает в себя несколько последовательных секций центробежных насосов, которые могут быть сконфигурированы с учетом специфических параметров ствола скважины для определенного назначения. Электрические центробежные насосы (ЭЦН) являются общепринятым методом механизированной добычи, обеспечивающим широкий диапазон размеров и производительности. Электрические центробежные насосы как правило используются на старых месторождениях с высокой обводненностью (высоким соотношением вода-нефть).

Насосы ЭЦН обеспечивают экономичную добычу путем повышения нефтеотдачи на данных низкопродуктивных старых месторождениях. Заканчивания с оснащением ЭЦН являются альтернативными средствами механизированной эксплуатации скважин, которые имеют низкие давления призабойной зоны. Заканчивания скважины с оснащением ЭЦН являются наиболее эффективным способом эксплуатации высокодебитных скважин. При использовании ЭЦН больших размеров были получены дебиты до 90000 баррелей (14500 м3) жидкости в сутки.

Компоненты ЭЦН

Система ЭЦН состоит из нескольких компонентов, которые вращают последовательно соединенные центробежные насосы для повышения давления скважинной жидкости и подъема ее на устье. Энергия для вращения насоса обеспечивается высоковольтным (от 3 до 5 кВ) источником переменного тока, который приводит в действие специальный двигатель, способный работать при высоких температурах до 300 °F (150 °C) и высоких давлениях до 5000 фунт/дюйм2 (34 MПa) в скважинах глубиной до 12000 футов (3,7 км) с потребляемой мощностью до 1000 лошадиных сил (750 кВт). В ЭЦН применяется центробежный насос, который соединен с электродвигателем и работает при погружении в скважинную жидкость. Герметично изолированный электродвигатель вращает серию рабочих колес. Каждое рабочее колесо в серии подает жидкость через отвод во входное отверстие рабочего колеса расположенного над ним.

В типовом 4 дюймовом ЭЦН, каждое рабочее колесо дает прибавку давления примерно 9 psi (60 KПa). Например, типичный 10-ти секционный насос создает давление около 90 psi (600 KПa) на выходе (т.е 10 колес x 9 psi). Лифт и производительность насоса зависят от диаметра рабочего колеса и ширины лопатки рабочего колеса. Давление насоса является функцией количества рабочих колес. В качестве примера, 7-ми секционный насос с мощностью 1/2 лошадиной силы может откачивать большой объем воды при низком давлении, тогда как 14-ти секционный насос с мощностью 1/2 лошадиной силы откачает меньший объем, но при более высоком давлении. Как во всех центробежных насосах, увеличение глубины скважины или давления на выходе приводит к снижению производительности.

В системах ЭЦН электродвигатель располагается внизу компоновки, а насос сверху. Электрический кабель крепится к наружной поверхности НКТ и компоновка в сборе спускается в скважину таким образом, что насос и электродвигатель находятся ниже уровня жидкости. Система механических уплотнений и выравнивающее/предохранительное уплотнение (равнозначные названия) используются для предотвращения поступления жидкости в электродвигатель и устранения опасности короткого замыкания. Насос может быть подсоединен либо к трубе, к гибкому шлангу, либо спущен по направляющим рельсам или проволоке таким образом, что насос садится на фланцевую муфту с лапой и при этом обеспечивается соединение с компрессорными трубами. При вращении электродвигателя вращение передается на рабочее колесо в батарее последовательных центробежных насосов. Чем больше секций имеет насос, тем выше будет подъем жидкости.

Электродвигатель подбирается с учетом потребностей насоса. Насос проектируется для откачки определенного объема жидкости. Вал может быть изготовлен из монель-металла, а секции из коррозионно- и износостойкого материала. Насос имеет роторно-центробежное действие. Защитный узел крепится сверху насоса для изолирования электродвигателя и для обеспечения движения вала в центре для привода насоса.

Кабель проходит из верхней части электродвигателя, сбоку от насоса/уплотнения, и крепится к внешней поверхности каждой НКТ по всей длине лифтовой колонны от электродвигателя до устья скважины, а затем до электрораспределительной коробки. Кабель состоит из трех жил защищенного и изолированного непрерывного провода. Bвиду ограниченного зазора вокруг насоса/уплотнения, в промежутке от электродвигателя до НКТ выше насоса используется плоский кабель. В этом месте он сращивается с менее дорогим круглым кабелем, который проходит до устья. Кабель может иметь металлическую оболочку для защиты от повреждения.

Проектирование систем ЭЦН требует всестороннего и тщательного анализа с целью одновременного решения ряда специфических задач их применения. Для проектирования требуется информация по притоку скважины (кривая потока (КП) или кривая продуктивности скважины (КПС)), данные о скважинных жидкостях (дебит по нефти, водонефтяной фактор, газожидкостное соотношение), данные по трубам (глубины и размеры НКТ и обсадных труб), температуры (на забое и на устье), и давления на устье скважины. Для надлежащего проектирования и подбора оборудования также требуется информация по твердой фазе, твердым отложениям, асфальтенам, коррозионно-активным жидкостям, коррозионно-активным газам и т.д.

Оборудование устья требует установки силового трансформатора и щита управления, а также электрораспределительной коробки с воздушным охлаждением. Если требуется использование привода с регулируемой скоростью (ПРС), тогда необходим дополнительный повышающий трансформатор в цепи до входа кабеля в устье скважины. Трубная головка имеет конструкцию, позволяющую удерживать колонну НКТ и изолировать электрический кабель. Этот изолятор, как правило, способен выдержать давление как минимум 3000 psi. Щит управления обычно оборудуется амперметром, плавкими предохранителями, молниезащитой и системой отключения. Он имеет и другие устройства, такие как выключатель при высоком и низком токе и аварийную сигнализацию. Он позволяет эксплуатировать скважину непрерывно, с перерывами или полностью остановить эксплуатацию.

Он обеспечивает защиту от пиков напряжения или разбалансирований, которые могут произойти в источнике электропитания. Трансформаторы, как правило, располагаются на краю кустового основания. Входящее электрическое напряжение трансформируется в напряжение, требуемое для работы электродвигателя на предполагаемой нагрузке и для компенсации потерь в кабеле. Повышенное напряжение (пониженный ток) снижает потери на скважинном кабеле, но следует учитывать и другие факторы (Справочное руководство по промысловым насосам, 2006). ЭЦН резко теряют производительность когда в насос попадает значительный процент газа.

Пороговый уровень для начала возникновения проблемы с газом как правило принимается 10% доли газа по объему на входе насоса при давлении на входе насоса. Ввиду того, что насосы имеют высокую - до 4000 об/мин (67 Гц) - скорость вращения и малые зазоры, они не являются стойкими к воздействию твердой фазы, например песка. ЭЦНы для нефтяных скважин выпускаются для обсадных колонн диаметров от 4 1/2 до 9 5/8 дюймов. Выпускаются насосы для обсадных колонн большего диаметра, однако они используются преимущественно в водяных скважинах. Для определенного размера обсадной колонны, как правило, более оптимальным выбором является оборудование с большим диаметром. Оборудование с большим диаметром является более коротким, как электродвигатель, так и насосы являются более эффективными, а электродвигатели легче охлаждаются. Они создают тихое компактное устьевое оборудование.

Преимущества ЭЦН

Вследствие минимальных требований к оборудованию на устье, ЭЦНы могут пользоваться спросом для применений на площадках с ограниченными рабочими площадями, как например на морских установках, если затраты на подъем не являются ограничивающим фактором. Они также используются на промыслах, где нет доступного газа для систем газлифта. ЭЦНы являются одним из наиболее высокообъемных методов механизированной эксплуатации. ЭЦНы имеют преимущество над другими высокообъемными методами, так как они могут создавать более высокую депрессию на пласт и повысить его продуктивность в тех случаях, когда возможно решение проблем с помехой от газа и выноса песка. Диаметр обсадной колонны также не является важным для обеспечения возможности откачки таких больших объемов.

По мере роста объемов заводнения, традиционным становится откачка нескольких тысяч баррелей жидкости в сутки в процессе улучшения эффективности пластового вытеснения. Данная система легко может быть автоматизирована и может проводить откачку периодически или постоянно, но постоянная откачка является предпочтительной для увеличения срока службы. Для неглубоких скважин капитальные затраты являются относительно невысокими.

Недостатки ЭЦН

Существует несколько недостатков ЭЦН. Основной проблемой является ограниченный срок службы. Насос как таковой относится к высокоскоростному центробежному типу, который может быть поврежден абразивными материалами, твердой фазой или обломками. Формирование окалины или минерального осадка может помешать работе электрического центробежного насоса. Экономическая эффективность ЭЦН в большой мере зависит от стоимости электроэнергии. Это является особенно критичным в отдаленных регионах. Система не обладает широкой эксплуатационной гибкостью. Все основные компоненты находятся в призабойной зоне скважины, поэтому, когда возникает проблема или требуется замена какого-либо компонента, приходится извлекать всю систему целиком.

Если присутствует высокий процент газа, принимаются меры для его отделения и возврата назад в обсадную колонну до того как он попадет в насос. Засасывание больших объемов свободного газа может вызвать неустойчивую работу и привести к механическому износу и возможному перегреву. На морских установках, где по правилам требуется применение пакера, весь газ откачивается с жидкостью. В этих особых условиях применяются специальные насосы, в которых возможно создание первичного напора на приеме насоса.

Авторы: Джеймс Ф. Ли, профессор технологии нефти Керр Макги, школа геологии и технологии нефти, университет Оклахомы, Норман, Оклахома;
и Саид Мохтаб, советник по научно-исследовательским проектам по природному газу, департамент химии и технологии нефти, университет Вайоминга, Ларами, Вайоминг.

Схема УЭЦН

УЭЦН – установка электроцентробежного насоса, в английском варианте - ESP (electric submersible pump). По количеству скважин, в которых работают такие насосы, они уступают установкам ШГН, но зато по объемам добычи нефти, которая добывается с их помощью, УЭЦН вне конкуренции. С помощью УЭЦН добывается порядка 80% всей нефти в России.

В общем и целом УЭЦН - обычный насосный агрегат, только тонкий и длинный. И умеет работать в среде отличающейся своей агрессивностью к присутствующим в ней механизмам. Состоит он из погружного насосного агрегата (электродвигатель с гидрозащитой + насос), кабельной линии, колонны НКТ, оборудования устья скважины и наземного оборудования (трансформатора и станции управления).

Основные узлы УЭЦН:

ЭЦН (электроцентробежный насос) – ключевой элемент установки, который собственно и осуществляет подъем жидкости из скважины на поверхность. Состоит он из секций, которые в свою очередь состоят из ступеней (направляющих аппаратов) и большого числа рабочих колес собранных на валу и заключенных в стальной корпус (трубу). Основные характеристики ЭЦН – это дебит и напор, поэтому в названии каждого насоса присутствуют эти параметры. Например, ЭЦН-60-1200 перекачивает 60 м 3 /сут жидкости с напором 1200 метров.

ПЭД (погружной электродвигатель) – второй по важности элемент. Представляет собой асинхронный электродвигатель, заполненный специальным маслом.

Протектор (или гидрозащита) – элемент, расположенный между электродвигателем и насосом. Отделяет электродвигатель, заполненный маслом от насоса заполненного пластовой жидкостью и при этом передает вращение от двигателя к насосу.

Кабель , с помощью которого к погружному электродвигателю подводится электроэнергия. Кабель бронированный. На поверхности и до глубины спуска насоса он круглого сечения (КРБК), а на участке погружного агрегата вдоль насоса и гидрозащиты - плоский (КПБК).

Дополнительное оборудование:

Газосепаратор – используется для снижения количества газа на входе в насос. Если необходимости в снижении количества газа нет, то используется простой входной модуль, через который в насос поступает скважинная жидкость.

ТМС – термоманометрическая система. Градусник и манометр в одном лице. Выдает нам на поверхность данные о температуре и давлении той среды, в которой работает спущенный в скважину ЭЦН.

Вся эта установка собирается непосредственно при ее спуске в скважину. Собирается последовательно снизу вверх не забывая про кабель, который пристегивается к самой установке и к НКТ, на которых все это и висит, специальными металлическими поясами. На поверхности кабель запитывается на устанавливаемые вблизи куста повышающий трансформатор (ТМПН) и станцию управления.

Помимо уже перечисленных узлов в колонне насосно-компрессорных труб над электроцентробежным насосом устанавливаются обратный и сливной клапаны.

Обратный клапан (КОШ - клапан обратный шариковый) используется для заполнения насосно-компрессорных труб жидкостью перед пуском насоса. Он же не позволяет жидкости сливаться вниз при остановках насоса. Во время работы насоса обратный клапан находится в открытом положении под действием давления снизу.

Над обратным клапаном монтируется сливной клапан (КС) , который используется для спуска жидкости из НКТ перед подъемом насоса из скважины.

Электроцентробежные погружные насосы имеют значительные преимущества перед глубинными штанговыми насосами:

  • Простота наземного оборудования;
  • Возможность отбора жидкости из скважин до 15000 м 3 /сут;
  • Возможность использовать их на скважинах с глубиной более 3000 метров;
  • Высокий (от 500 суток до 2-3 лет и более) межремонтный период работы ЭЦН;
  • Возможность проведения исследований в скважинах без подъема насосного оборудования;
  • Менее трудоемкие методы удаления парафина со стенок насосно-компрессорных труб.

Электроцентробежные погружные насосы могут применяться в глубоких и наклонных нефтяных скважинах (и даже в горизонтальных), в сильно обводненных скважинах, в скважинах с йодо-бромистыми водами, с высокой минерализацией пластовых вод, для подъема соляных и кислотных растворов. Кроме того, разработаны и выпускаются электроцентробежные насосы для одновременно-раздельной эксплуатации нескольких горизонтов в одной скважине со 146 мм и 168 мм обсадными колоннами. Иногда электроцентробежные насосы применяются также для закачки минерализованной пластовой воды в нефтяной пласт с целью поддержания пластового давления.


Самое обсуждаемое
Мышцы ануса: их тренировка и расслабление Как расслабить сфинктер прямой Мышцы ануса: их тренировка и расслабление Как расслабить сфинктер прямой
Сказка братьев Гримм: Снегурочка Снегурочка от братьев гримм брифли Сказка братьев Гримм: Снегурочка Снегурочка от братьев гримм брифли
Бутерброды на День рождения ребенка Бутерброды на День рождения ребенка


top