Безразмерная материальная точка и разные системы отсчета. Материальная точка Можно ли человека принять за материальную точку

Безразмерная материальная точка и разные системы отсчета. Материальная точка Можно ли человека принять за материальную точку

Под материальной точкой подразумевается макроскопическое тело, свойствами которой (масса, вращение, форма и т.д.) можно пренебречь, если есть необходимость описании его движения. О том, что такое материальная точка, вы узнаете из этой статьи.

Если говорить о том, может ли это тело рассмотрено в качестве такой точки, то здесь все определяется не размерами тела, а от поставленных в задаче условий. Как пример, радиус нашей планеты на порядок меньше расстояния между Солнцем и Землей, а орбитальное движение может быть описано как раз в виде движения материальной точки, которая обладает аналогичной земле массой и располагается в ее центре. Однако если рассматривать суточное движение планеты вокруг собственной оси, тогда заменять ей на материальную точку бессмысленно. Модель точки рассматриваемого типа к конкретному телу определяется не размерами самого тела, а в большей степени условиями его перемещения. Как пример, согласно теореме о движении центра масс системы при перемещении поступательного типа каждое твёрдое тело можно рассматривать в качестве материальной точки, положение которой аналогично центру масс тела.

Такие физические свойства точки как масса, скорость, положение и прочие определяют её поведение в каждый момент времени.

Положение в пространстве рассматриваемой точки определяется в виде положения геометрической точки. В механике материальная точка имеет массу, постоянную во времени и независимую от каких-либо факторов её перемещения и взаимодействия с прочими телами. Если использовать подход к построению механики, основанный на аксиомах, тогда за одну них берется следующее:

Аксиома

Материальной точкой называют тело - геометрическую точку, которой соответствует скаляр, именуемый массой: (r и m), где r является вектором в евклидовом пространстве, который относится к той или иной декартовой координатной системе. Масса постоянна и независима от положения точки во времени и пространстве.

Материальная точка запасает механическую энергию исключительно как кинетическую энергию её перемещения в пространстве, либо в качестве потенциальной энергии, которая вступает во взаимодействие с полем. Это говорит о том, что данная точка не может быть деформирована, вращаться вокруг своей же оси, а также она не реагирует на её изменения в пространстве. Параллельно с этим материальная точка движется с изменением её расстояния от пары углов Эйлера и какого-либо мгновенного центра поворота, задающих линии направление, а она в свою очередь соединяет эту точку с центром. Такой метод весьма распространен в механике.

Методика, по которой изучаются законы движения реальных объектов за счет исследования перемещения идеальной модели - это основа механики. Каждое макроскопическое тело может быть представлено в виде взаимодействующих друг с другом материальных точек, обладающими массами, соответствующими массам его частей. Изучение перемещения данных частей сводится к тому, что проводится изучение движения рассматриваемых точек.

Сам термин несколько ограничен в применении. Как пример разреженный газ при высоком температурном режиме характеризуется небольшим размером молекул относительно типичного расстояния между ними. И хотя этим можно пренебрегать в некоторых случаях и принимать молекулу за материальную точку, в основном все не так. Внутренняя энергия молекулы определяется колебаниями и вращениями, а её ёмкость зависит от размеров, структуры и свойств частицы. В некоторых случаях одноатомные молекулы могут быть рассмотрены как примеры материальной точки, но даже у них при высоком температурном режиме возбуждаются электронные оболочки из-за столкновений молекул с дальнейшим высвечиванием.

Первое задание

  • а) машину, въезжающую в гараж;
  • б) машину на трассе Москва - Ростов?
  • а) въезжающая в гараж машина не может считаться таким объектом, поскольку разница в размерах между автомобилем и гаражом относительно мала;
  • б) авто на трассе Москва - Ростов можно рассматривать как такую точку, поскольку размеры транспортного средства на порядки меньше пути.

Второе задание

  • а) мальчика, идущего домой из школы (путь 1 км);
  • б) мальчика, делающего физические упражнения?
  • а) Поскольку путь от школы к дому составляет километр, мальчик может быть рассмотрен в качестве такой точки, поскольку по своим размерам он очень мал относительно проходимого расстояния.
  • б) когда этот же ребенок выполняет утреннюю зарядку, его нельзя принимать за материальную точку.

Материальная точка

Материа́льная то́чка (частица) - простейшая физическая модель в механике - идеальное тело, размеры которого равны нулю, можно также считать размеры тела бесконечно малыми по сравнению с другими размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как положение геометрической точки .

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

Особенности

Масса, положение и скорость материальной точки в каждый конкретный момент времени полностью определяют её поведение и физические свойства .

Следствия

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве, и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера , которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Ограничения

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы , пары металлов , и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Материальная точка" в других словарях:

    Точка, имеющая массу. В механике понятием материальная точка пользуются в случаях, когда размеры и форма тела при изучении его движения не играют роли, а важна только масса. Практически любое тело можно рассматривать как материальную точку, если… … Большой Энциклопедический словарь

    Понятие, вводимое в механике для обозначения объекта, к рый рассматривается как точка, имеющая массу. Положение М. т. в пр ве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически тело можно считать… … Физическая энциклопедия

    материальная точка - Точка, обладающая массой. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика EN particle DE materialle Punkt FR point matériel … Справочник технического переводчика

    Современная энциклопедия

    В механике: бесконечно малое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    Материальная точка - МАТЕРИАЛЬНАЯ ТОЧКА, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной… … Иллюстрированный энциклопедический словарь

    Понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение материальной точки в пространстве определяется как положение геометрической точки, что упрощает решение задач механики. Практически любое тело можно… … Энциклопедический словарь

    Материальная точка - геометрическая точка, обладающая массой; материальная точка абстрактный образ материального тела, обладающего массой и не имеющего размеров … Начала современного естествознания

    материальная точка - materialusis taškas statusas T sritis fizika atitikmenys: angl. mass point; material point vok. Massenpunkt, m; materieller Punkt, m rus. материальная точка, f; точечная масса, f pranc. point masse, m; point matériel, m … Fizikos terminų žodynas

    материальная точка - Точка, имеющая массу … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Физика. 9 класс (20 таблиц) , . Учебный альбом из 20 листов. Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньютона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по…

Материальная точка

Материа́льная то́чка (частица) - простейшая физическая модель в механике - идеальное тело, размеры которого равны нулю, можно также считать размеры тела бесконечно малыми по сравнению с другими размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как положение геометрической точки .

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

Особенности

Масса, положение и скорость материальной точки в каждый конкретный момент времени полностью определяют её поведение и физические свойства .

Следствия

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве, и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера , которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Ограничения

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы , пары металлов , и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Примечания


Wikimedia Foundation . 2010 .

  • Механическое движение
  • Абсолютно твёрдое тело

Смотреть что такое "Материальная точка" в других словарях:

    МАТЕРИАЛЬНАЯ ТОЧКА - точка, имеющая массу. В механике понятием материальная точка пользуются в случаях, когда размеры и форма тела при изучении его движения не играют роли, а важна только масса. Практически любое тело можно рассматривать как материальную точку, если… … Большой Энциклопедический словарь

    МАТЕРИАЛЬНАЯ ТОЧКА - понятие, вводимое в механике для обозначения объекта, к рый рассматривается как точка, имеющая массу. Положение М. т. в пр ве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически тело можно считать… … Физическая энциклопедия

    материальная точка - Точка, обладающая массой. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика EN particle DE materialle Punkt FR point matériel … Справочник технического переводчика

    МАТЕРИАЛЬНАЯ ТОЧКА Современная энциклопедия

    МАТЕРИАЛЬНАЯ ТОЧКА - В механике: бесконечно малое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    Материальная точка - МАТЕРИАЛЬНАЯ ТОЧКА, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной… … Иллюстрированный энциклопедический словарь

    материальная точка - понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение материальной точки в пространстве определяется как положение геометрической точки, что упрощает решение задач механики. Практически любое тело можно… … Энциклопедический словарь

    Материальная точка - геометрическая точка, обладающая массой; материальная точка абстрактный образ материального тела, обладающего массой и не имеющего размеров … Начала современного естествознания

    материальная точка - materialusis taškas statusas T sritis fizika atitikmenys: angl. mass point; material point vok. Massenpunkt, m; materieller Punkt, m rus. материальная точка, f; точечная масса, f pranc. point masse, m; point matériel, m … Fizikos terminų žodynas

    материальная точка - Точка, имеющая массу … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Физика. 9 класс (20 таблиц) , . Учебный альбом из 20 листов. Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньютона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по…

Понятие материальной точки. Траектория. Путь и перемещение. Система отсчета. Скорость и ускорение при криволинейном движении. Нормальное и тангенциальное ускорения. Классификация механических движений.

Предмет механики . Механикой называют раздел физики, посвященный изучению закономерностей простейшей формы движения материи - механического движения.

Механика состоит из трех подразделов: кинематики, динамики и статики.

Кинематика изучает движение тел без учета причин, его вызывающих. Она оперирует такими величинами как перемещение, пройденный путь, время, скорость движения и ускорение.

Динамика исследует законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил. К кинематическим величинам добавляются величины - сила и масса.

В статике исследуют условия равновесия системы тел.

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени.

Материальная точка - тело, размерами и формой которого можно пренебречь в данных условиях движения, считая массу тела сосредоточенной в данной точке. Модель материальной точки – простейшая модель движения тела в физике. Тело можно считать материальной точкой, когда его размеры много меньше характерных расстояний в задаче.

Для описания механического движения необходимо указать тело, относительно которого рассматривается движение. Произвольно выбранное неподвижное тело, по отношению к которому рассматривается движение данного тела, называется телом отсчета .

Система отсчета - тело отсчета вместе со связанными с ним системой координат и часами.

Рассмотрим движение материальной точки М в прямоугольной системе координат, поместив начало координат в точку О.

Положение точки М относительно системы отсчета можно задать не только с помощью трех декартовых координат , но также с помощью одной векторной величины - радиуса-вектора точки М, проведенного в эту точку из начала системы координат (рис. 1.1). Если - единичные вектора (орты) осей прямоугольной декартовой системы координат, то

либо зависимость от времени радиус-вектора этой точки

Три скалярных уравнения (1.2) или эквивалентное им одно векторное уравнение (1.3) называются кинематическими уравнениями движения материальной точки .

Траекторией материальной точки называется линия, описываемая пространстве этой точкой при ее движении (геометрическое место концов радиуса-вектора частицы). В зависимости от формы траектории различают прямолинейное и криволинейное движения точки. Если все участки траектории точки лежат в одной плоскости, то движение точки называют плоским.

Уравнения (1.2) и (1.3) задают траекторию точки в так называемой параметрической форме. Роль параметра играет время t. Решая эти уравнения совместно и исключая из них время t, найдем уравнение траектории.

Длиной пути материальной точки называют сумму длин всех участков траектории, пройденных точкой за рассматриваемый промежуток времени.

Вектором перемещения материальной точки называется вектор, соединяющий начальное и конечное положение материальной точки, т.е. приращение радиуса-вектора точки за рассматриваемый промежуток времени

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории. Из того, что перемещение является вектором, следует подтверждающийся на опыте закон независимости движений: если материальная точка участвует в нескольких движениях, то результирующее перемещение точки равно векторной сумме ее перемещений, совершаемых ею за тоже время в каждом из движений порознь

Для характеристики движения материальной точки вводят векторную физическую величину - скорость , величину, определяющую как быстроту движения, так и направление движения в данный момент времени.

Пусть материальная точка движется по криволинейной траектории МN так, что в момент времени t она находится в т.М, а в момент времени в т. N. Радиус-векторы точек М и N соответственно равны , а длина дуги МN равна (рис. 1.3).

Вектором средней скорости точки в интервале времени от t до t t называют отношение приращения радиуса-вектора точки за этот промежуток времени к его величине :

Вектор средней скорости направлен также, как вектор перемещения т.е. вдоль хорды МN.

Мгновенная скорость или скорость в данный момент времени . Если в выражении (1.5) перейти к пределу, устремляя к нулю, то мы получим выражение для вектора скорости м.т. в момент времени t прохождения ее через т.М траектории.

В процессе уменьшения величины точка N приближается к т.М, и хорда МN, поворачиваясь вокруг т.М, в пределе совпадает по направлению с касательной к траектории в точке М. Поэтому вектор и скорость v движущейся точки направлены по касательной траектории в сторону движения. Вектор скорости v материальной точки можно разложить на три составляющие, направленные вдоль осей прямоугольной декартовой системы координат.

Из сопоставления выражений (1.7) и (1.8) следует, что проекции скорости материальной точки на оси прямоугольной декартовой системы координат равны первым производным по времени от соответствующих координат точки:

Движение, при котором направление скорости материальной точки не изменяется, называется прямолинейным. Если численное значение мгновенной скорости точки остается во время движения неизменным, то такое движение называется равномерным.

Если же за произвольные равные промежутки времени точка проходит пути разной длины, то численное значение ее мгновенной скорости с течением времени изменяется. Такое движение называют неравномерным.

В этом случае часто пользуются скалярной величиной , называемой средней путевой скоростью неравномерного движения на данном участке траектории. Она равна численному значению скорости такого равномерного движения, при котором на прохождение пути затрачивается то же время , что и при заданном неравномерном движении:

Т.к. только в случае прямолинейного движения с неизменной по направлению скоростью, то в общем случае:

Величину пройденного точкой пути можно представить графически пло­щадью фигуры ограниченной кривой v = f (t ), прямыми t = t 1 и t = t 1 и осью времени на графике скорости.

Закон сложения скоростей . Если материальная точка одновременно участвует в нескольких движениях, то результирующее перемещения в соответствии с законом независимости движения, равно векторной (геометрической) сумме элементарных перемещений, обусловленных каждым из этих движений в отдельности:

В соответствии с определением (1.6):

Таким образом, скорость результирующего движения равна геометрической сумме скоростей всех движений, в которых участвует материальная точка, (это положение носит название закона сложения скоростей).

При движении точки мгновенная скорость может меняться как по величине, так и по направлению. Ускорение характеризует быстроту изменения модуля и направления вектора скорости, т.е. изменение величины вектора скорости за единицу времени.

Вектор среднего ускорения . Отношение приращения скорости к промежутку времени , в течение которого произошло это приращение, выражает среднее ускорение:

Вектор, среднего ускорения совпадает по направлению с вектором .

Ускорение, или мгновенное ускорение равно пределу среднего ускорения при стремлении промежутка времени к нулю:

В проекциях на соответствующие координаты оси:

При прямолинейном движении векторы скорости и ускорения совпадают с направлением траектории. Рассмотрим движение материальной точки по криволинейной плоской траектории. Вектор скорости в любой точке траектории направлен по касательной к ней. Допустим, что в т.М траектории скорость была , а в т.М 1 стала . При этом считаем, что промежуток времени при переходе точки на пути из М в М 1 настолько мал, что изменением ускорения по величине и направлению можно пренебречь. Для того, чтобы найти вектор изменения скорости , необходимо определить векторную разность:

Для этого перенесем параллельно самому себе, совмещая его начало с точкой М. Разность двух векторов равна вектору, соединяющему их концы равна стороне АС МАС, построенного на векторах скоростей, как на сторонах. Разложим вектор на две составляющих АВ и АД, и обе соответственно через и . Таким образом вектор изменения скорости равен векторной сумме двух векторов:

Таким образом, ускорение материальной точки можно представить как векторную сумму нормального и тангенциального ускорений этой точки

По определению:

где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент. Вектор тангенциального ускорения направлен по касательной к траектории движения тела.

Если использовать для единичного касательного вектора обозначение , то можно записать тангенциальное ускорение в векторном виде:

Нормальное ускорение характеризует быстроту изменения скорости по направлению. Вычислим вектор:

Для этого проведем перпендикуляр через точки М и М1 к касательным к траектории (рис. 1.4) Точку пересечения обозначим через О. При достаточно малом участок криволинейной траектории можно считать частью окружности радиуса R. Треугольники МОМ1 и МВС подобны, потому, что являются равнобедренными треугольниками с одинаковыми углами при вершинах. Поэтому:

Но , тогда:

Переходя к пределу при и учитывая, что при этом , находим:

,

Так как при угол , направление этого ускорения совпадает с направлением нормали к скорости , т.е. вектор ускорения перпендикулярен . Поэтому это ускорение часто называют центростремительным.

Нормальное ускорение (центростремительное) направлено по нормали к траектории к центру ее кривизны O и характеризует быстроту изменения направления вектора скорости точки.

Полное ускорение определяется векторной суммой тангенциального нормального ускорений (1.15). Так как векторы этих ускорений взаимноперпендикулярны, то модуль полного ускорения равен:

Направление полного ускорения определяется углом между векторам и :

Классификация движений.

Для классификаций движений воспользуемся формулой для определения полного ускорения

Предположим, что

Следовательно,
Это случай равномерного прямолинейного движения.

Но

2)
Следовательно

Это случай равномерного движения. В этом случае

При v 0 = 0 v t = at – скорость равноускоренного движения без начальной скорости.

Криволинейное движение с постоянной скоростью.

ВОПРОСЫ

1. Обладает ли материальная точка массой? Имеет ли она размеры?

Под материальной точкой в физике понимается тело, размерами которого в условиях данной задачи можно пренебречь. Материальная точка обладает определенной массой, но имеет нулевые (очень малые) размеры.

2. Материальная точка- это реальный объект или абстрактное понятие?

Материальная точка - абстрактное понятие, т.к. в природе все тела обладают определёнными размерами.

3. С какой целью используется понятие "материальная точка" ?

Понятие материальной точки используется для упрощения условий и решений задач. Если пренебречь размерами реального тела, то нет необходимости рассматривать движение тела при его движении вокруг своей оси (мяч в полёте) или движение каких- то частей тела (колеса автомобиля), если нас интересует с какой скоростью движется тело.

4. В каких случаях движущееся тело обычно рассматривают как материальную точку?

В данном случае движущееся тело можно рассматривать как материальную точку, если его размеры намного меньше расстояния на которое оно перемещается.

5. Приведите пример, показывающий, что одно и то же тело в одной ситуации можно считать материальной точкой, а в другой- нет.

Если рассматривать, например, движение автомобиля, при его перемещении из города А в город Б, то в данном случае, при определении средней скорости движения автомобиля его можно рассматривать как материальную точку, однако если нас интересует движение автомобиля более подробно, то окажется, что при движении автомобиля, например передние и задние колёса из-за неровностей дороги двигаются по разному (не синхронно).

6. При каком движении тела его можно рассматривать как материальную точку даже в том случае, если проходимые им расстояния сравнимы с его размерами?

Если тело движется поступательно.

7. Что называется материальной точкой?

Материальная точка - это абстрактное понятие обозначающее тело, размеры которого не играют роли в условиях рассматриваемой задачи.

8. В каком случае положение движущегося тела можно задать с помощью одной координатной оси?

Если тело движется прямолинейно.

9. Что такое система отсчёта?

Система отсчёта- это тело отсчёта, связанная с ним система координат и прибор для измерения времени, по отношению к которым рассматривается движение материальных точек или тел.


УПРАЖНЕНИЯ

2. Самолёт совершает перелёт из Москвы во Владивосток. Может ли рассматривать самолёт как материальную точку диспетчер, наблюдающий за его движением? пассажир этого самолёта?

С точки зрения диспетчера, если рассматривать только маршрут самолёта, то можно, но если в воздухе находятся другие самолёты или он заходит на посадку - нет. С точки зрения пассажира, при полёте по маршруту- да, но при перемещении пассажира внутри самолёта - нет.

3. Когда говорят о скорости машины, поезда и других транспортных средств, тело отсчёта обычно не указывают. Что подразумевают в этом случае под телом отсчёта?

Под телом отсчёта, в данном случае, обычно подразумевают поверхность Земли.

4. Мальчик стоял на земле и наблюдал, как его младшая сестра каталась на карусели. После катания девочка сказала брату, что и он сам, и дома, и деревья быстро проносились мимо неё. Мальчик же стал утверждать, что он вместе с домами и деревьями, был неподвижен, а двигалась сестра. Относительно каких тел отсчёта рассматривали движение девочка и мальчик? Объясните кто прав в споре.

Оба правы. Мальчик выбрал систему отсчёта относительно себя (он был неподвижен), а девочка относительно себя (она была на качелях).

5. Относительно какого тела отсчёта рассматривают движение, когда говорят:
а) скорость ветра равна 5 м/с?
б) бревно плывет по течению реки, поэтому его скорость равна нулю;
в) скорость плывущего по реке дерева равна скорости течения воды в реке;
г) любая точка колеса движущегося велосипеда описывает окружность;
д) Солнце утром восходит на востоке, в течение дня движется по небу, а вечером заходит на западе?

а) относительно поверхности Земли; б) относительно текущей воды; в) относительно поверхности Земли; г) относительно центра (оси) колеса; д) относительно поверхности Земли.



top