Как решать с5 по химии. Задача С5 на ЕГЭ по химии. Определение формул органических веществ. Теория по заданию

Как решать с5 по химии. Задача С5 на ЕГЭ по химии. Определение формул органических веществ. Теория по заданию

Химия. Тематические тесты для подготовки к ЕГЭ. Задания высокого уровня сложности (C1-С5). Под ред. Доронькина В.Н.

3-е изд. - Р. н/ Д: 2012. - 234 с. Р. н/ Д: 2011. - 128 с.

Предлагаемое пособие составлено в соответствии с требованиями новой спецификации ЕГЭ и предназначено для подготовки к единому государственному экзамену по химии. Книга включает задания высокого уровня сложности (С1-С5). Каждый ее раздел содержит необходимые теоретические сведения, разобранные (демонстрационные) примеры выполнения заданий, которые позволяют освоить методику выполнения заданий части С, и группы тренировочных заданий по темам. Книга адресована учащимся 10-11-х классов общеобразовательных учреждений, готовящимся к ЕГЭ и планирующим получить высокий результат на экзамене, а также учителям и методистам, которые организуют процесс подготовки к экзамену по химии. Пособие является частью учебно-методического комплекса «Химия. Подготовка к ЕГЭ», включающего такие пособия, как «Химия. Подготовка кЕГЭ-2013», «Химия. 10-11 классы. Тематические тесты для подготовки к ЕГЭ. Базовый и повышенный уровни» и др.

Формат: pdf (2012 , 3-е изд., испр. и доп., 234с.)

Размер: 2,9 Мб

Смотреть, скачать: 14 .12.2018г, ссылки удалены по требованию изд-ва "Легион" (см. примечание)

СОДЕРЖАНИЕ
Введение 3
Вопрос С1. Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее 4
Задания вопроса С1 12
Вопрос С2. Реакции, подтверждающие взаимосвязь различных классов неорганических веществ 17
Задания вопроса С2 28
Вопрос СЗ. Реакции, подтверждающие взаимосвязь углеводородов и кислородсодержащих органических соединений 54
Задания вопроса СЗ 55
Вопрос С4. Расчеты: массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси), если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества 68
Задания вопроса С4 73
Вопрос С5. Нахождение молекулярной формулы вещества 83
Задания вопроса С5 85
Ответы 97
Приложение. Взаимосвязь различных классов неорганических веществ. Дополнительные задания 207
Задания 209
Решение заданий 218
Литература 234

ВВЕДЕНИЕ
Эта книга предназначена для подготовки к выполнению заданий высокого уровня сложности по общей, неорганической и органической химии (задания части С).
По каждому из вопросов С1 - С5 приведено большое количество заданий (всего более 500), что позволит выпускникам проверить знания, усовершенствовать имеющиеся навыки, а при необходимости выучить фактический материал, включаемый в проверочные задания части С.
Содержание пособия отражает особенности вариантов ЕГЭ, предлагавшихся в последние годы, и соответствует актуальной спецификации. Вопросы и ответы соответствуют формулировкам тестов ЕГЭ.
Задания части С имеют различную степень сложности. Максимальная оценка верно выполненного задания составляет от 3 до 5 баллов (в зависимости от степени сложности задания). Проверка заданий этой части осуществляется на основе сравнения ответа выпускника с поэлементным анализом приведенного образца ответа, каждый правильно выполненный элемент оценивается в 1 балл. Например, в задании СЗ необходимо составить 5 уравнений реакций между органическими веществами, описывающих последовательное превращение веществ, а вы можете составить только 2 (предположим, второе и пятое уравнения). Обязательно запишите их в бланк ответа, вы получите 2 балла за задание СЗ и существенно повысите свой результат на экзамене.
Надеемся, что это книга поможет вам успешно сдать ЕГЭ.

Внимание!!!

Изменения в КИМ ЕГЭ 2018 по химии года по сравнению с 2017 годом

В экзаменационной работе 2018 года по сравнению с работой 2017 года приняты следующие изменения.

1. В целях более чёткого распределения заданий по отдельным тематическим блокам и содержательным линиям незначительно изменён порядок следования заданий базового и повышенного уровней сложности в части 1 экзаменационной работы.

2. В экзаменационной работе 2018 года увеличено общее количество заданий с 34 (в 2017 г.) до 35 за счёт увеличения числа заданий части 2 экзаменационной работы с 5 (в 2017 году) до 6 заданий. Это достигнуто посредством введения заданий с единым контекстом. В частности, в данном формате представлены задания № 30 и № 31, которые ориентированы на проверку усвоения важных элементов содержания: «Реакции окислительно-восстановительные» и «Реакции ионного обмена».

3. Изменена шкала оценивания некоторых заданий в связи с уточнением уровня сложности этих заданий по результатам их выполнения в экзаменационной работе 2017 года:

Задание № 9 повышенного уровня сложности, ориентированное на проверку усвоения элемента содержания «Характерные химические свойства неорганических веществ» и представленное в формате на установление соответствия между реагирующими веществами и продуктами реакции между этими веществами, будет оцениваться максимально 2 баллами;

Задание № 21 базового уровня сложности, ориентированное на проверку усвоения элемента содержания «Реакции окислительно- восстановительные» и представленное в формате на установление соответствия между элементами двух множеств, будет оцениваться 1 баллом;

Задание № 26 базового уровня сложности, ориентированное на проверку усвоения содержательных линий «Экспериментальные основы химии» и «Общие представления о промышленных способах получения важнейших веществ» и представленное в формате на установление соответствия между элементами двух множеств, будет оцениваться 1 баллом;

Задание № 30 высокого уровня сложности с развёрнутым ответом, ориентированное на проверку усвоения элемента содержания «Реакции окислительно-восстановительные», будет оцениваться максимально 2 баллами;

Задание № 31 высокого уровня сложности с развёрнутым ответом, ориентированное на проверку усвоения элемента содержания «Реакции ионного обмена», будет оцениваться максимально 2 баллами.

В целом принятые изменения в экзаменационной работе 2018 года ориентированы на повышение объективности проверки сформированности ряда важных общеучебных умений, в первую очередь таких, как: применять знания в системе, самостоятельно оценивать правильность выполнения учебной и учебно-практической задачи, а также сочетать знания о химических объектах с пониманием математической зависимости между различными физическими величинами.

Общие изменения в КИМ ЕГЭ 2017 года - оптимизирована структура экзаменационной работы:

1. Принципиально изменена структура части 1 КИМ: исключены задания с выбором одного ответа; задания сгруппированы по отдельным тематическим блокам, в каждом из которых есть задания как базового, так и повышенного уровней сложности.

2. Уменьшено общее количество заданий с 40 (в 2016 г.) до 34.

3. Изменена шкала оценивания (с 1 до 2 баллов) выполнения заданий базового уровня сложности, которые проверяют усвоение знаний о генетической связи неорганических и органических веществ (9 и 17).

4. Максимальный первичный балл за выполнение работы в целом составит 60 баллов (вместо 64 баллов в 2016 году)

Уважаемые коллеги и ученики!

На сайте ФИПИ появился открытый банк заданий по 13 предметам, в том числе, и по химии.

Открытый банк заданий ЕГЭ и ГИА по химии

Открытые банки заданий ЕГЭ и ГИА-9 предоставляют следующие возможности:
 познакомиться с заданиями, собранными по тематическому рубрикатору,
 загрузить задания по выбранной пользователем теме с разбивкой по 10 заданий на страницу и возможностью перелистывать страницы,
 открыть в отдельном окне задание, выбранное пользователем.
Ответы на задания не предоставляются.

Подборка материалов

Задания С1 (с решениями)

Задания С2 (с решениями)

Задания С3

Задания С4

Задания С5

Предлагаю подборку материалов (Сикорской О.Э.) для подготовки учащихся к ЕГЭ:

Основные типы задач части В:

Основные типы задач части С:

В этой статье подробно описано решение задач по химии С5 ЕГЭ . Аименно, как , если известныколичественные данные о его превращениях (массе, объёму). В данной конкретной задаче известны масса одного продукта и объёмы газообразных продуктов, а также масса органического вещества.

В задачах, где требуется определить формулу органического вещества , сначала нужно найти относительную молекулярную массу этого вещества.

При сгорании 0,45 г газообразного органического вещества выделилось 0,448 л (н.у.*) углекислого газа, 0,63 г воды и 0,112 л (н.у.*) азота. Плотность паров органического вещества по азоту 1,607. Определите молекулярную формулу этого вещества.

* «н.у.», значит «нормальные условия».

Алгоритм решения задач данного типа:

ШАГ 1. Обозначить количественные данные из условия задачи через соответствующие величины:

Масса органического вещества m (орг.в-ва) = 0,45 [г ]

Объём углекислого газа V(CO 2) = 0,448 [л ].

Масса воды m (H 2 O) = 0,63 [г ]

Объём азота V(N 2) = 0,112 [л ].

Плотность паров органического вещества по азоту D N 2 (орг.в-ва) = 1,607

Молярный объём газа V M * = 22,4 [л/моль ]

* величина постоянная при нормальных условиях, используется в расчётах только для газов.

ШАГ 2. Найти относительную молекулярную массу (Mr) органического вещества , т.е. найти относительную массу его молекулы.

! масса молекулы вещества, рассчитанная по его относительной молекулярной массе, – есть величина относительная.

D N2 (орг.в-ва) = Mr(орг.в-ва) / Mr(N 2)

Выразим из этой формулы относительную молекулярную массу Mr органического вещества, получим :

Mr(орг.в-ва) = D N2 (орг.в-ва) × Mr(N 2)

Mr азота:

Mr (N 2 ) = 2 Ar (N ) = 2 × 14 = 28,

Где Ar – относительная атомная масса элемента, взятая из Таблицы Д.И.Менделеева.

Итак, рассчитаем относительную молекулярную массу Mr органического вещества:

Mr (орг.в-ва) = 1,607 × 28 = 45 ,

Это означает, что суммарное содержание всех элементов в органическом веществе равно 45 а.е.м (атомные единицы массы), или 45 % .

ШАГ 3. Определить соотношение элементов в органическом веществе.

В исходное органическое вещество могут входить все составляющие продуктов сгорания: водород, углерод, кислород, азот.

1) Найдём количество атомов углерода n(C) в органическом веществе по количеству вещества углекислого газа n(CO 2) .

При сгорании весь углерод из органического вещества переходит в состав углекислого газа, поэтому n(C)=n(CO 2) .

Рассчитаем количество вещества углекислого газа по формуле :

n(CO 2) = V(CO 2) / V M

n(CO 2) = 0,448 [л ] : 22,4 [л/моль ] = 0,02 [моль ].

Таким образом, n(C) = n(CO 2) = 0,02 [моль ].

2) Найдём количество атомов водорода n(Н) в органическом веществе по количеству вещества воды n(Н 2 О) .

При сгорании весь водород из органического вещества переходит в состав воды, поэтому n(Н)= 2 n(Н 2 О) *

* для образования 1-й молекулы воды (1Н 2 О ) из органического вещества при сгорании необходимо 2 атома водорода (2Н ), значит количество атомов водорода должно быть в 2 раза больше, чем количество вещества воды.

Так как вода при нормальных условиях (н.у.) – не газ, то количество вещества воды рассчитывается по формуле :

n(Н 2 О) = m(Н 2 О) / M(Н 2 О),

Где M – молярная масса * , имеет единицы измерения [г/моль ].

* Молярная масса вещества М рассчитывается также как относительная молекулярная масса Mr.

Рассчитаем молярную массу воды :

M(Н 2 О) = Mr (Н 2 О) = 2 Ar (H ) + Ar (O) = 2 ×1 + 16 = 18 [г/моль ]

Итак, рассчитаем количество вещества воды:

n (Н 2 О) = 0,63 [г ] : 18 [г/моль ] = 0,035 [моль ].

Таким образом, n(Н) = 2 n(Н 2 О) = 2 × 0,035 = 0,07 [моль ].

3) Найдём количество атомов азота n(N) в органическом веществе по количеству вещества азота n(N 2) .

При сгорании весь азот из органического вещества переходит в состав газа азота, поэтому n(N) = 2 n(N 2) *

* для образования 1-й молекулы газа азота (1N 2 ) из органического вещества при сгорании необходимо 2 атома азота (2N ), значит, количество атомов азота должно быть в 2 раза больше, чем количество вещества газа азота.

Так как азот при нормальных условиях (н.у.) – газ, то его количество вещества рассчитывается по формуле :

n(N 2) = V(N 2) / V M

n(N 2) = 0,112 [л ] : 22,4 [л/моль ] = 0,05 [моль ].

Таким образом, n(N) = 2n(N 2) = 2 × 0,05 = 0,01 [моль ].

4) Определим содержание кислорода в органическом веществе.

Рассчитаем содержание каждого элемента в органическом веществе по формуле :

m(Э) =n(Э) × M(Э) ,

где m (Э) – масса элемента в [г ];

n (Э) – количество атомов элемента в [моль ];

М (Э)* – молярная масса элемента в [г/моль ].

*Молярная масса элемента М(Э) равна его относительной атомной массе Аr(Э)

Рассчитаем содержание углерода в органическом веществе по формуле:

m(C) = n(C) × M(C)

m(C) = 0,02 [моль ] × 12 [г/моль ] = 0,24 [г ]

Так как 0,24 < 1, то содержание углерода переводим в проценты, получаем:

0,24 × 100% = 24%

Рассчитаем содержание водорода в органическом веществе по формуле:

m(Н) = n(Н) × M(Н)

m(Н) = 0,07 [моль ] × 1 [г/моль ] = 0,07 [г ]

Так как 0,07 < 1, то содержание водорода переводим в проценты, получаем:

0,07 × 100% = 7%

Рассчитаем содержание азота в органическом веществе по формуле:

m(N) = n(N) × M(N)

m(N) = 0,01 [моль ] × 14 [г/моль ] = 0,14 [г ]

Так как 0,14 < 1, то содержание азота переводим в проценты, получаем:

0,14 × 100% = 14%

Рассчитаем содержание кислорода в органическом веществе:

m(O) = Mr(орг.в-ва) – (m(C) + m(H) + m(N) ) = 45 – (24 + 7 + 14) = 0

Делаем вывод о том, что кислорода нет в составе органического вещества .

СООТНОШЕНИЕ ЭЛЕМЕНТОВ В ОРГАНИЧЕСКОМ ВЕЩЕСТВЕ:

n(C) : n(H) : n(N) = 0,02: 0,07: 0,01,

или

n(C) : n(H) : n(N) = 2: 7: 1

ШАГ 4. Составить простейшую формулу вещества.

Простейшая (эмпирическая) формула – это атомные и, соответственно, мольные соотношения составляющих элементов. Тогда, в соответствии с СООТНОШЕНИЕМ, простейшая формула органического вещества:

С 2 H 7 N

ШАГ 5. Проверить, что простейшая формула вещества соответствует истинной молекулярной формуле вещества.

Рассчитаем относительную молекулярную массу Mr органического вещества по простейшей формуле:

Mr (С 2 H 7 N) = 2 Ar(C ) + 7 Ar(H ) + Ar(N) = 2 ×12 + 7 ×1 + 14 = 45

Делаем вывод, что простейшая формула вещества соответствует истинной молекулярной формуле вещества.

Итак, данная статья позволяет освоить решение задач по химии С5 ЕГЭ .С помощью данной статьи можно узнать, как определить формулу органического вещества , если известныколичественные данные о его превращениях (массе, объёму).В данном примере мы определили молекулярную формулу органического вещества, если известны масса одного продукта и объёмы газообразных продуктов, а также массаорганическоговещества.

Мы обсудили общий алгоритм решения задачи №35 (С5). Пришло время разобрать конкретные примеры и предложить вам подборку задач для самостоятельного решения.

Пример 2 . На полное гидрирование 5,4 г некоторого алкина расходуется 4,48 л водорода (н. у.) Определите молекулярную формулу данного алкина.

Решение . Будем действовать в соответствии с общим планом. Пусть молекула неизвестного алкина содержит n атомов углерода. Общая формула гомологического ряда C n H 2n-2 . Гидрирование алкинов протекает в соответствии с уравнением:

C n H 2n-2 + 2Н 2 = C n H 2n+2 .

Количество вступившего в реакцию водорода можно найти по формуле n = V/Vm. В данном случае n = 4,48/22,4 = 0,2 моль.

Уравнение показывает, что 1 моль алкина присоединяет 2 моль водорода (напомним, что в условии задачи идет речь о полном гидрировании), следовательно, n(C n H 2n-2) = 0,1 моль.

По массе и количеству алкина находим его молярную массу: М(C n H 2n-2) = m(масса)/n(количество) = 5,4/0,1 = 54 (г/моль).

Относительная молекулярная масса алкина складывается из n атомных масс углерода и 2n-2 атомных масс водорода. Получаем уравнение:

12n + 2n - 2 = 54.

Решаем линейное уравнение, получаем: n = 4. Формула алкина: C 4 H 6 .

Ответ : C 4 H 6 .

Хотелось бы обратить внимание на один существенный момент: молекулярной формуле C 4 H 6 соответствует несколько изомеров, в т. ч., два алкина (бутин-1 и бутин-2). Опираясь на данные задачи, мы не сможем однозначно установить структурную формулу исследуемого вещества. Впрочем, в данном случае этого и не требуется!

Пример 3 . При сгорании 112 л (н. у.) неизвестного циклоалкана в избытке кислорода образуется 336 л СО 2 . Установите структурную формулу циклоалкана.

Решение . Общая формула гомологического ряда циклоалканов: С n H 2n . При полном сгорании циклоалканов, как и при горении любых углеводородов, образуются углекислый газ и вода:

C n H 2n + 1,5n O 2 = n CO 2 + n H 2 O.

Обратите внимание: коэффициенты в уравнении реакции в данном случае зависят от n!

В ходе реакции образовалось 336/22,4 = 15 моль углекислого газа. В реакцию вступило 112/22,4 = 5 моль углеводорода.

Дальнейшие рассуждения очевидны: если на 5 моль циклоалкана образуется 15 моль CO 2 , то на 5 молекул углеводорода образуется 15 молекул углекислого газа, т. е., одна молекула циклоалкана дает 3 молекулы CO 2 . Поскольку каждая молекула оксида углерода (IV) содержит по одному атому углерода, можно сделать вывод: в одной молекуле циклоалкана содержится 3 атома углерода.

Вывод: n = 3, формула циклоалкана - С 3 Н 6 .

Как видите, решение этой задачи не "вписывается" в общий алгоритм. Мы не искали здесь молярную массу соединения, не составляли никакого уравнения. По формальным критериям этот пример не похож на стандартную задачу С5. Но выше я уже подчеркивал, что важно не вызубрить алгоритм, а понимать СМЫСЛ производимых действий. Если вы понимаете смысл, вы сами сможете на ЕГЭ внести изменения в общую схему, выбрать наиболее рациональный путь решения.

В этом примере присутствует еще одна "странность": необходимо найти не только молекулярную, но и структурную формулу соединения. В предыдущей задаче нам этого сделать не удалось, а в данном примере - пожалуйста! Дело в том, что формуле С 3 Н 6 соответствует всего один изомер - циклопропан.

Ответ : циклопропан.


Пример 4 . 116 г некоторого предельного альдегида нагревали длительное время с аммиачным раствором оксида серебра. В ходе реакции образовалось 432 г металлического серебра. Установите молекулярную формулу альдегида.

Решение . Общая формула гомологического ряда предельных альдегидов: C n H 2n+1 COH. Альдегиды легко окисляются до карбоновых кислот, в частности, под действием аммиачного раствора оксида серебра:

C n H 2n+1 COH + Ag 2 O = C n H 2n+1 COOH + 2Ag.

Примечание. В действительности, реакция описывается более сложным уравнением. При добавлении Ag 2 O к водному раствору аммиака образуется комплексное соединение OH - гидроксид диамминсеребра. Именно это соединение и выступает в роли окислителя. В ходе реакции образуется аммонийная соль карбоновой кислоты:

C n H 2n+1 COH + 2OH = C n H 2n+1 COONH 4 + 2Ag + 3NH 3 + H 2 O.

Еще один важный момент! Окисление формальдегида (HCOH) не описывается приведенным уравнением. При взаимодействии НСОН с аммиачным раствором оксида серебра выделяется 4 моль Ag на 1 моль альдегида:

НCOH + 2Ag 2 O = CO 2 + H 2 O + 4Ag.

Будьте осторожны, решая задачи, связанные с окислением карбонильных соединений!

Вернемся к нашему примеру. По массе выделившегося серебра можно найти количество данного металла: n(Ag) = m/M = 432/108 = 4 (моль). В соответствии с уравнением, на 1 моль альдегида образуется 2 моль серебра, следовательно, n(альдегида) = 0,5n(Ag) = 0,5*4 = 2 моль.

Молярная масса альдегида = 116/2 = 58 г/моль. Дальнейшие действия попробуйте проделать самостоятельно: необходимо составить уравнение решить его и сделать выводы.

Ответ : C 2 H 5 COH.


Пример 5 . При взаимодействии 3,1 г некоторого первичного амина с достаточным количеством HBr образуется 11,2 г соли. Установите формулу амина.

Решение . Первичные амины (С n H 2n+1 NH 2) при взаимодействии с кислотами образуют соли алкиламмония:

С n H 2n+1 NH 2 + HBr = [С n H 2n+1 NH 3 ] + Br - .

К сожалению, по массе амина и образовавшейся соли мы не сможем найти их количества (поскольку неизвестны молярные массы). Пойдем по другому пути. Вспомним закон сохранения массы: m(амина) + m(HBr) = m(соли), следовательно, m(HBr) = m(соли) - m(амина) = 11,2 - 3,1 = 8,1.

Обратите внимание на этот прием, весьма часто используемый при решении C 5. Если даже масса реагента не дана в явной форме в условии задачи, можно попытаться найти ее по массам других соединений.

Итак, мы вернулись в русло стандартного алгоритма. По массе бромоводорода находим количество, n(HBr) = n(амина), M(амина) = 31 г/моль.

Ответ : CH 3 NH 2 .


Пример 6 . Некоторое количество алкена Х при взаимодействии с избытком хлора образует 11,3 г дихлорида, а при реакции с избытком брома - 20,2 г дибромида. Определите молекулярную формулу Х.

Решение . Алкены присоединяют хлор и бром с образованием дигалогенпроизводных:

С n H 2n + Cl 2 = С n H 2n Cl 2 ,

С n H 2n + Br 2 = С n H 2n Br 2 .

Бессмысленно в данной задаче пытаться найти количество дихлорида или дибромида (неизвестны их молярные массы) или количества хлора или брома (неизвестны их массы).

Используем один нестандартный прием. Молярная масса С n H 2n Cl 2 равна 12n + 2n + 71 = 14n + 71. М(С n H 2n Br 2) = 14n + 160.

Массы дигалогенидов также известны. Можно найти количества полученных веществ: n(С n H 2n Cl 2) = m/M = 11,3/(14n + 71). n(С n H 2n Br 2) = 20,2/(14n + 160).

По условию, количество дихлорида равно количеству дибромида. Этот факт дает нам возможность составить уравнение: 11,3/(14n + 71) = 20,2/(14n + 160).

Данное уравнение имеет единственное решение: n = 3.

Ответ : C 3 H 6


В финальной части предлагаю вам подборку задач вида С5 разной сложности. Попробуйте решить их самостоятельно - это будет отличной тренировкой перед сдачей ЕГЭ по химии!

В своей практике, я часто сталкиваюсь с проблемой при обучении решению задач по химии. Одно из сложных заданий в заданиях ЕГЭ стало и задание С 5.

Приведу несколько примеров:

Пример 1.

Определить формулу вещества, если оно содержит 84,21% углерода и 15,79% водорода, и имеет относительную плотность по воздуху, равную 3,93.

Решение:

1. Пусть масса вещества равна 100 г. Тогда масса С будет равна 84,21 г, а масса Н - 15,79 г.

2. Найдём количество вещества каждого атома:

n(C) = m / M = 84,21 / 12 = 7,0175 моль,

n(H) = 15,79 / 1 = 15,79 моль.

3. Определяем мольное соотношение атомов С и Н:

С: Н = 7,0175: 15,79 (сократим оба числа на меньшее) = 1: 2,25 (домножим на 4) = 4: 9.

Таким образом, простейшая формула - С 4 Н 9 .

4. По относительной плотности рассчитаем молярную массу:

М = D(возд.) 29 = 114 г/моль.

5. Молярная масса, соответствующая простейшей формуле С 4 Н 9 - 57 г/моль, это в 2 раза меньше истинно молярной массы.

Значит, истинная формула - С 8 Н 18 .

Пример 2.

Определить формулу алкина с плотностью 2,41 г/л при нормальных условиях.

Решение:

1. Общая формула алкина С n H 2n−2

2. Плотность ρ - это масса 1 литра газа при нормальных условиях.Так как 1 моль вещества занимает объём 22,4 л, то необходимо узнать, сколько весят 22,4 л такого газа:

M = (плотность ρ) (молярный объём V m) = 2,41 г/л 22,4 л/моль = 54 г/моль.

14 n − 2 = 54, n = 4.

Значит, алкин имеет формулу С 4 Н 6 .

Ответ: С 4 Н 6 .

Пример 3.

Относительная плотность паров органического соединения по азоту равна 2. При сжигании 9,8 г этого соединения образуется 15,68 л углекислого газа (н. у) и 12,6 г воды. Выведите молекулярную формулу органического соединения.

Решение:

1. Так как вещество при сгорании превращается в углекислый газ и воду, значит, оно состоит из атомов С, Н и, возможно, О. Поэтому его общую формулу можно записать как СхНуОz.

2. Схему реакции сгорания мы можем записать (без расстановки коэффициентов):

СхНуОz + О 2 → CO 2 + H 2 O

3. Весь углерод из исходного вещества переходит в углекислый газ, а весь водород - в воду.

Находим количества веществ CO 2 и H 2 O, и определяем, сколько моль атомов С и Н в них содержится:

а) n(CO 2) = V / V m = 15,68 / 22,4 = 0,7 моль.

(На одну молекулу CO 2 приходится один атом С, значит, углерода столько же моль, сколько и CO 2 . n(C) = 0,7 моль)

б) n(Н 2 О) = m / M = 12,6 / 18 = 0,7 моль.

(В одной молекуле воды содержатся два атома Н, значит количество водорода в два раза больше, чем воды. n(H) = 0,7 2 = 1,4 моль)

4. Проверяем наличие в веществе кислорода. Для этого из массы всего исходного вещества надо вычесть массы С и Н.

m(C) = 0,7 12 = 8,4 г, m(H) = 1,4 1 = 1,4 г

Масса всего вещества 9,8 г.

m(O) = 9,8 − 8,4 − 1,4 = 0, т.е. в данном веществе нет атомов кислорода.

5. Поиск простейшей и истинной формул.

С: Н = 0,7: 1,4 = 1: 2. Простейшая формула СН 2 .

6. Истинную молярную массу ищем по относительной плотности газа по азоту (не забыть, что азот состоит из двухатомных молекул N 2 и его молярная масса 28 г/моль):

M ист. = D(N 2) M(N 2) = 2 28 = 56 г/моль.

Истиная формула СН 2 , её молярная масса 14. 56 / 14 = 4. Истинная формула: (СН 2) 4 = С 4 Н 8 .

Ответ: С 4 Н 8 .

Пример 4.

При взаимодействии 25,5 г предельной одноосновной кислоты с избытком раствора гидрокарбоната натрия выделилось 5,6 л (н.у.) газа. Определите молекулярную формулу кислоты.

Решение:

1. C n H 2n+1 COOH + NaHCO 3 à C n H 2n+1 COONa + H 2 O + CO 2

2. Найдем количество вещества СО 2

n(CO 2) = V/Vm = 5,6л: 22,4 л/моль = 0,25 моль

3. n(CO 2) = n(кислоты) = 0,25 моль (из уравнения видно это соотношение 1:1)

Тогда молярная масса кислоты равна:

M(к-ты) = m/n = 25,5г: 0,25 моль = 102г/моль

4. М(к-ты) = 12n+2n+1+12+16+16 (из обшей формулы, М = Ar(C)*n + Ar(H)*n + Ar(O)*n = 12*n + 1*(2n+1)+ 12+16+16+1)

М(к-ты) = 12n +2n +46 = 102; n = 4; Формула кислоты С 4 Н 9 СООН.

Задачи для самостоятельного решения С5:

1. Массовая доля кислорода в одноосновной аминокислоте равна 42,67%. Установите молекулярную формулу кислоты.

2. Установите молекулярную формулу третичного амина, если известно, что при его сгорании выделилось 0,896 л (н.у.) углекислого газа, 0,99 г воды и 0,112 л (н.у.) азота.

3. Для полного сжигания 2 л газообразного углеводорода потребовалось 13 л кислорода, при этом образовалось 8 л углекислого газа. Найти молекулярную формулу углеводорода.

4. При сжигании 3 л газообразного углеводорода получено 6 л углекислого газа и некоторое количество воды. Определите молекулярную формулу углеводорода, если известно, что для полного сжигания потребовалось 10,5 л кислорода.

5. Дихлорпроизводное алкана содержит 5,31% водорода по массе. Определите молекулярную формулу дихлоралкана. Приведите структурную формулу одного из возможных изомеров и назовите его

6. При сгорании газообразного органического вещества, не содержащего кислород, выделилось 4,48 л углекислого газа (н.у.), 3,6 г воды и 2 г фтороводорода. Установите молекулярную формулу соединения.



top