Расчет трансформатора онлайн. Расчет сетевого трансформатора источника питания. Схема, описание. Положительные моменты работы с автоматическим расчетом онлайн

Расчет трансформатора онлайн. Расчет сетевого трансформатора источника питания. Схема, описание. Положительные моменты работы с автоматическим расчетом онлайн

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100-200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s - в квадратных сантиметрах, а Р1 - в ваттах.

По значению S определяется число витков w" на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w" на 20-30 %.

и т.д.

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз - диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2-3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

Таблица 1

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5x3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

Для повышающего автотрансформатора

Для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15 Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 - I2, если автотрансформатор повышающий, и I2 - I1 если он понижающий.

Определение мощности силового трансформатора

Как узнать мощность трансформатора?

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором. Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания. начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность . входное напряжение . выходное напряжение . а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (I н на напряжение питания прибора (U н ). Думаю, многие знакомы с этой формулой ещё по школе.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД ). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным . но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см .) и ширину центрального лепестка пластины (1,7 см .). Получаем сечение магнитопровода – 3,4 см 2. Далее нам понадобиться следующая формула.

где S — площадь сечения магнитопровода; P тр — мощность трансформатора; 1,3 — усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см 2 . которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора

7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов — «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

9zip.ru Ламповый звук hi-end и ретро электроника Онлайн-калькулятор расчёта по размерам магнитопровода габаритной мощности трансформатора

Ни для кого не секрет, что радиолюбители частенько самостоятельно мотают трансформаторы под свои нужды. Ведь не всегда найдётся, например, готовый сетевой трансформатор. Более актуальным этот вопрос становится, когда нужен анодно-накальный или выходной трансформатор для лампового усилителя. Здесь остаётся лишь запастись проволокой и подобрать хорошие сердечники.

Достать нужный магнитопровод порой оказывается непросто и приходится выбирать из того, что есть. Для быстрого расчёта габаритной мощности был написан приведённый здесь онлайн калькулятор. По размерам сердечника можно быстро провести все необходимые расчёты, которые выполняются по приведённой ниже формуле, для двух типов: ПЛ и ШЛ.


Введите размеры магнитопровода сердечника трансформатора. При необходимости подкорректируйте остальные значения. Внизу Вы увидите рассчитанную габаритную мощность трансформатора, который можно сделать на таком сердечнике, по формуле:


И небольшой FAQ:

Можно ли использовать железо от трансформаторов бесперебойников для изготовления выходных трансформаторов?

В этих трансформаторах пластины имеют толщину 0,5мм, что не приветствуется в аудио. Но при желании — можно. При расчётах выходников следует исходить из параметров 0,5Тл на частоте 30Гц. При расчётах же силовиков на этом железе следует задавать не более 1,2Тл.

Можно ли использовать пластины от разных трансформаторов?

Если они одинаковые по размерам, то можно. Для этого следует смешать их.

Как правильно собирать магнитопровод?

Для однотактного выходника можно две крайние Ш-пластины поставить с противоположной стороны, как часто сделано в заводских ТВЗ. В промежуток через бумажку уложить I-пластины, на 2 штуки меньше. Взяв трансформатор так, чтобы I-пластины оказались снизу, с лёгким ударом поместить его на толстую ровную металлическую плиту. Это можно делать несколько раз, контролируя процесс измерителем индуктивности, чтобы получить одинаковую пару трансформаторов.

Как определить мощность трансформатора по магнитопроводу?

Для двухтактных усилителей нужно разделить габаритную мощность железа на 6-7. Для однотактных — на 10-12 для триода и на 20 для тетрода-пентода.

Как стягивать силовой трансформатор, нужно ли клеить магнитопровод?

Если хочется склеить, то применяем жидкий клей. Подаём на первичную обмотку постоянку 5-15 вольт, чтобы получить ток около 0,2А. При этом подковы стянутся без деформации. После этого можно надеть бандаж, аккуратно затянуть и оставить, пока клей не высохнет.

Как снять лак, которым покрыты трансформаторы бесперебойников?

Замочить на пару дней в ацетоне или проварить пару часов в воде. После этого лак должен сниматься. Механическое снимание лака недопустимо, т.к. появятся заусенцы и пластины будут коротить между собой.

Годятся ли эти трансформаторы куда-нибудь без разборки и перемотки?

Если на них есть дополнительная обмотка (около 30 вольт), то, соединив её последовательно с первичной, можно получить мощный накальный трансформатор. Но нужно смотреть ток холостого хода, т.к. эти трансформаторы не предназначены для длительной работы и часто намотаны не так, как нам бы хотелось.

Типы магнитопроводов силовых трансформаторов.

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Как определить габаритную мощность трансформатора.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

P = B * S² / 1,69

Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.

В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт.
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 - 60 Ватт. Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт. нет ничего страшного - подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р2 = U2 I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт;
U2 - напряжение на выходе трансформатора, нами задано 36 вольт;
I2 - ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более &51; = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р1 = Р2 / &51; = 60 / 0,8 = 75 ватт.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1. мощности потребляемой от сети 220 вольт. зависит площадь поперечного сечения магнитопровода S.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

Где:
S - площадь в квадратных сантиметрах,
P1 - мощность первичной сети в ваттах.

S = 1,2 √75 = 1,2 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50 / 10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U1 w = 220 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U2 w = 36 4,8 = 172.8 витков, округляем до 173 витка.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I1 = P1 / U1 = 75 / 220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I2 = P2 / U2 = 60 / 36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

Для первичной обмотки диаметр провода будет:

d1 = 0,8 √I 1 = 0,8 √0,34 = 0,8 * 0,58 = 0,46 мм. Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d2 = 0,8 √I 2 = 0,8 √1,67 = 0,8 * 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА. то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

где: d - диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм равна:

s = 0,8 d² = 0,8 1,1² = 0,8 1,21 = 0,97 мм²

Округлим до 1,0 мм² .

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм. и площадью по 0,5 мм².

Или два провода:

Первый диаметром 1,0 мм. и площадью сечения 0,79 мм² ,
- второй диаметром 0,5 мм. и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм² .

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.

Программа для расчета силовых трансформаторов Trans50Hz v.3.7.0.0.

Уважаемый Пользователь!

Для того чтобы скачать файл с нашего сервера,
нажмите на любую ссылку под строкой «Оплаченная реклама:»!

Простейший расчет силового трансформатора

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки - накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50-70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Еще записи по теме

Простейший расчет силовых трансформаторов и автотрансформаторов

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100-200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s - в квадратных сантиметрах, а Р1 - в ваттах.

По значению S определяется число витков w" на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w" на 20-30 %.

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз - диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2-3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5×3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

Для повышающего автотрансформатора

Для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15 Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 - I2, если автотрансформатор повышающий, и I2 - I1 если он понижающий.

Электрический аппарат - трансформатор используется для преобразования поступающего переменного напряжения в другое - исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Расчет ш-образного трансформатора

  1. Рассмотрим на примере процесс расчета обычного Ш-образного трансформатора. Предположим, даны параметры: сила тока нагрузки i2=0,5А, выходное напряжение (напряжение вторичной обмотки) U2=12В, напряжение в сети U1=220В.
  2. Первым показателем определяется мощность на выходе: P2=U2ˣi2=12ˣ0,5=6 (Вт). Это значит, что подобная мощность предусматривает использование магнитопровода сечением порядка 4 см² (S=4).
  3. Потом определяют количество витков, необходимых для одного вольта. Формула для данного вида трансформатора такая: К=50/S=50/4=12,5 (витков/вольт).
  4. Затем, определяют количество витков в первичной обмотке: W1=U1ˣK=220ˣ12,5=2750 (витков). А затем количество витков, расположенных во вторичной обмотке: W2=U2ˣK=12ˣ12,5=150.
  5. Силу тока, возникающую в первичной обмотке, рассчитайте так: i1=(1,1×P2)/U1=(1,1×6)/220=30мА.Это позволит рассчитать размер диаметра провода, заложенного в первичную обмотку и не оснащенного изоляцией. Известно, что максимальная сила тока для провода из меди равна 5-ти амперам на мм², из чего следует, что: d1=5А/(1/i1)=5A/(1/0,03А)=0,15 (мм).
  6. Последним действием будет расчет диаметра провода вторичной обмотки с использованием формулы d2=0,025ˣ√i2 , причем значение i2 используется в миллиамперах (мА): d2=0,025ˣ22,4=0,56 (мм).

Как рассчитать мощность трансформатора

  1. Напряжение, имеющееся на вторичной обмотке, и max ток нагрузки узнайте заранее. Затем умножьте коэффициент 1,5 на ток максимальной нагрузки (измеряемый в амперах). Так вы определите обмотку второго трансформатора (также в амперах).
  2. Определите мощность, которую расходует выпрямитель от вторичной обмотки рассчитываемого трансформатора: умножьте максимальный ток, проходящий через нее на напряжение вторичной обмотки.
  3. Подсчитайте мощность трансформатора посредством умножения максимальной мощности на вторичной обмотке на 1,25.

Если вам необходимо определить мощность трансформатора, который потребуется для конкретных целей, то нужно суммировать мощность установленных энергопотребляющих приборов с 20%-ми, для того, чтобы он имел запас. Например, если у вас имеется 10м светодиодной полосы, потребляющей 48 ватт, то вам необходимо к этому числу прибавить 20%. Получится 58 ватт – минимальная мощность трансформатора, который нужно будет установить.

Как рассчитать трансформатор тока

Основной характеризующей чертой трансформатора является коэффициент трансформации, который указывает, насколько изменятся основные параметры тока, вследствие его прохождения через это устройство.

Если коэффициент трансформации превышает 1, значит, трансформатор является понижающим, а если меньше этого показателя, то повышающим.

  1. Обычный трансформатор образован из двух катушек. Определитесь с количеством витков катушек N1 и N2, которые соединены магнитопроводом. Узнайте коэффициент трансформации k посредством деления количества витков первичной катушки N1, подключенной к источнику тока, на число витков катушки N2, к которой подключена нагрузка: k=N1/N2.
  2. Проведите измерение электродвижущей силы (ЭДС) на обоих трансфорсматорных обмотках ε1 и ε2, если отсутствует возможность узнать число витков в них. Сделать это можно так: к источнику тока подключите первичную обмотку. Получится так называемый холостой ход. Используя тестер, определите напряжение на каждой обмотке. Оно будет соответствовать ЭДС измеряемой обмотки. Не забывайте, что возникающие потери энергии из-за сопротивления обмоток настолько малы, что ими можно пренебречь. Коэффициент трансформации рассчитывается через отношение ЭДС первичной обмотки к ЭДС вторичной: k= ε1/ε2.
  3. Узнайте коэффициент трансформации находящегося в работе трансформатора, когда потребитель присоединен к вторичной обмотке. Определите его путем деления тока в первичной I1 обмотке, на возникший ток во вторичной I2 обмотке. Измерьте ток посредством последовательного присоединения тестера (переключенного в режим работы амперметра) к обмоткам: k=I1/I2.

Как определить количество витков вторичной обмотки?

Для расчёта количества витков вторичной обмотки необходимо знать, сколько витков приходится на один Вольт. Если количество витков первичной обмотки неизвестно, то это значение можно получить одним из предложенных ниже способов.

Первый способ.


Перед удалением вторичных обмоток с каркаса трансформатора, нужно замерить на холостом ходу (без нагрузки) напряжение сети и напряжение на одной из самых длинных вторичных обмоток. При размотке вторичных обмоток, нужно посчитать количество витков той обмотки, на которой был произведён замер.


Второй способ.


Этот способ можно применить, когда вторичная обмотка уже удалена, а количество витков не посчитано. Тогда можно намотать в качестве вторичной обмотки 50 -100 витков любого провода и сделать необходимые замеры. То же самое можно сделать, если используется трансформатор, имеющий всего несколько витков во вторичной обмотке, например, трансформатор для точечной сварки. Тогда временная измерительная обмотка позволит значительно увеличить точность расчётов.


Когда данные получены, можно воспользоваться простой формулой:


ω1 / U1 = ω 2 / U2


ω 1 – количество витков в первичной обмотке,

ω 2 – количество витков во вторичной обмотке,

U1 – напряжение на первичной обмотке,

U2 – напряжение на вторичной обмотке.


Я раздобыл вот такой трансформатор без вторичной обмотки и опознавательных знаков.

Намотал в качестве временной вторичной обмотки – 100 витков.

Намотал я эту обмотку тонким проводом, который не жалко и которого у меня больше всего. Намотал «в навал», что значит, как попало.


Результаты теста.

Напряжение сети во время замера – 216 Вольт.

Напряжение на вторичной обмотке – 20,19 Вольт.


Определяем количество витков на вольт при 216V:


100 / 20,19 = 4,953 вит./Вольт


Здесь на точности не стоит экономить, так как погрешность набегает при замерах. Благо, считаем-то не на бумажке.


Рассчитываем число витков первичной обмотки:


4,953 * 216 = 1070 вит.


Теперь можно определить количество витков на вольт при 220V.


1070 / 220 = 4,864 вит./Вольт


Рассчитываем количество витков во вторичных обмотках.


4,864 * 12,8 = 62 вит.

4,864 * 14,3 = 70 вит.



Как рассчитать диаметр провода для любой обмотки?

Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы подобрать оптимальный диаметр провода из имеющихся в наличии.


I = P / U


I – ток обмотки,

P – мощность потребляемая от данной обмотки,

U – действующее напряжение данной обмотки.


Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками "III" и "IV".


31 / (12,8+12,8) = 1,2 Ампер


Диаметр провода можно вычислить по формуле:


D = 1,13 √(I / j)


D – диаметр провода в мм,

I – ток обмотки в Амперах,

j – плотность тока в Ампер/мм².

При этом плотность тока можно выбрать по таблице.

Конструкция трансформатора Плотность тока (а/мм2) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Однокаркасная 3,0-4,0 2,5-3,0 2,0-2,5 1,7-2,0 1,4-1,7
Двухкаркасная 3,5-4,0 2,7-3,5 2,4-2,7 2,0-2,5 1,7-2,3
Кольцевая 4,5-5,0 4,0-4,5 3,5-4,5 3,0-3,5 2,5-3,0


Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.

А плотность тока я выбрал – 2,5 А/ мм².


1,13√ (1,2 / 2,5) = 0,78 мм


У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.



На картинке два варианта конструкции каркаса: А – обычная, В– секционная.

  1. Количество витков в одном слое.
  2. Количество слоёв.

Ширина моего несекционированного каркаса 40мм.

Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.


124 * 1,08 * 1,1: 40 3,68 слоя


1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.

Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.


Определяем толщину обмотки:


1,08 * 4 4,5 мм


У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.


Ток катушки "II" вряд ли будет больше чем – 100мА.


1,13√ (0,1 / 2,5) = 0,23 мм


Диметр провода катушки "II" – 0,23мм.

Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.


Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.

Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.


Длина проводов будет равна:


L = p * ω * 1,2


L – длина провода,

p – периметр каркаса в середине намотки,

ω – количество витков,

1,2* – коэффициент.

* Укладывать обмотку при намотке в несколько проводов сложно и утомительно, поэтому лучше перестраховаться и использовать этот коэффициент, компенсирующий ошибки расчёта и неаккуратной укладки.

Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.

Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.

Закрепить конец провода можно обычными нитками.

Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.

Если катушка разделена на секции для первичных и вторичных обмоток, то тогда и вовсе можно обойтись без изоляционных прокладок.

Как измерить диаметр провода.

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.



Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.



Я намотал 100 витков провода и получил длину набора –39 мм.


39 / 100 = 0,39 мм


По таблице определяю диметр провода по меди – 0,35мм.

Таблица данных обмоточных проводов.

Диаметр без изоляции, мм Сечение меди, мм² Сопротив-ление 1м при 20ºС, Ом Диаметр с изоляцией, мм Вес 100м с изоляцией, гр
0,03 0,0007 24,704 0,0014 0,045 0,8
0,04 0,0013 13,92 0,0026 0,055 1,3
0,05 0,002 9,29 0,004 0,065 1,9
0,06 0,0028 6,44 0,0057 0,075 2,7
0,07 0,0039 4,73 0,0077 0,085 3,6
0,08 0,005 3,63 0,0101 0,095 4,7
0,09 0,0064 2,86 0,0127 0,105 5,9
0,1 0,0079 2,23 0,0157 0,12 7,3
0,11 0,0095 1,85 0,019 0,13 8,8
0,12 0,0113 1,55 0,0226 0,14 10,4
0,13 0,0133 1,32 0,0266 0,15 12,2
0,14 0,0154 1,14 0,0308 0,16 14,1
0,15 0,0177 0,99 0,0354 0,17 16,2
0,16 0,0201 0,873 0,0402 0,18 18,4
0,17 0,0227 0,773 0,0454 0,19 20,8
0,18 0,0255 0,688 0,051 0,2 23,3
0,19 0,0284 0,618 0,0568 0,21 25,9
0,2 0,0314 0,558 0,0628 0,225 28,7
0,21 0,0346 0,507 0,0692 0,235 31,6
0,23 0,0416 0,423 0,0832 0,255 37,8
0,25 0,0491 0,357 0,0982 0,275 44,6
0,27 0,0573 0,306 0,115 0,31 52,2
0,29 0,0661 0,2бб 0,132 0,33 60,1
0,31 0,0755 0,233 0,151 0,35 68,9
0,33 0,0855 0,205 0,171 0,37 78
0,35 0,0962 0,182 0,192 0,39 87,6
0,38 0,1134 0,155 0,226 0,42 103
0,41 0,132 0,133 0,264 0,45 120
0,44 0,1521 0,115 0,304 0,49 138
0,47 0,1735 0,101 0,346 0,52 157
0,49 0,1885 0,0931 0,378 0,54 171
0,51 0,2043 0,0859 0,408 0,56 185
0,53 0,2206 0,0795 0,441 0,58 200
0,55 0,2376 0,0737 0,476 0,6 216
0,57 0,2552 0,0687 0,51 0,62 230
0,59 0,2734 0,0641 0,547 0,64 248
0,62 0,3019 0,058 0,604 0,67 273
0,64 0,3217 0,0545 0,644 0,69 291
0,67 0,3526 0,0497 0,705 0,72 319
0,69 0,3739 0,0469 0,748 0,74 338
0,72 0,4072 0,043 0,814 0,78 367
0,74 0,4301 0,0407 0,86 0,8 390
0,77 0,4657 0,0376 0,93 0,83 421
0,8 0,5027 0,0348 1,005 0,86 455
0,83 0,5411 0,0324 1,082 0,89 489
0.86 0,5809 0,0301 1,16 0,92 525
0,9 0,6362 0,0275 1,27 0,96 574
0,93 0,6793 0,0258 1,36 0,99 613
0,96 0,7238 0,0242 1,45 1,02 653
1 0,7854 0,0224 1,57 1,07 710
1,04 0,8495 0,0206 1,7 1,12 764
1,08 0,9161 0,0191 1,83 1,16 827
1,12 0,9852 0,0178 1,97 1,2 886
1,16 1,057 0,0166 2,114 1,24 953
1,2 1,131 0,0155 2,26 1,28 1020
1,25 1,227 0,0143 2,45 1,33 1110
1,3 1,327 0,0132 2,654 1,38 1190
1,35 1,431 0,0123 2,86 1,43 1290
1,4 1,539 0,0113 3,078 1,48 1390
1,45 1,651 0,0106 3,3 1,53 1490
1,5 1,767 0,0098 3,534 1,58 1590
1,56 1,911 0,0092 3,822 1,64 1720
1,62 2,061 0,0085 4,122 1,71 1850
1,68 2,217 0,0079 4,433 1,77 1990
1,74 2,378 0,0074 4,756 1,83 2140
1,81 2,573 0,0068 5,146 1,9 2310
1,88 2,777 0,0063 5,555 1,97 2490
1,95 2,987 0,0059 5,98 2,04 2680
2,02 3,205 0,0055 6,409 2,12 2890
2,1 3,464 0,0051 6,92 2,2 3110
2,26 4,012 0,0044 8,023 2,36 3620
2,44 4,676 0,0037 9,352 2,54 4220

В линейных источниках питания, ставших уже "классическими", основной элемент - сетевой трансформатор, обычно понижающий, который уменьшает сетевое напряжение до требуемого уровня. О том, как правильно его рассчитать (выбрать магнитопровод, рассчитать диаметр обмоточного провода, число витков в обмотках и т. д.), пойдет речь в предлагаемой статье.

Как выбрать магнитопровод

По конструктивному исполнению магнитопроводы для сетевых трансформаторов подразделяют на броневые, стержневые и тороидальные, а по технологии изготовления - на пластинчатые (рис. 1) и ленточные (рис. 2). На рис. 1 и 2 обозначены магнитопроводы: а) - броневые, б) - стержневые, в) - тороидальные.

В трансформаторах малой (до З00 Вт) и средней мощности (до 1000 Вт) чаще используют ленточные магнитопроводы . А среди ленточных наиболее применимы стержневые магнитопроводы. Они имеют ряд преимуществ по сравнению, например, с броневыми :

  1. Меньшая приблизительно на 25 % масса при одинаковой мощности трансформатора.
  2. Меньшая примерно на 30 % индуктивность рассеяния.
  3. Выше КПД.
  4. Меньшая чувствительность к внешним электромагнитным полям, поскольку ЭДС помех, наведенные в обмотках, которые расположены на разных стержнях, имеют противоположные знаки и взаимно компенсируются.
  5. Большая поверхность охлаждения обмоток.

Однако стержневым магнитопроводам присущи и недостатки:

  1. Все еще значительная индуктивность рассеяния.
  2. Необходимость изготовления двух катушек.
  3. Меньшая защищенность катушек от механического воздействия.

В тороидальных трансформаторах практически весь магнитный поток проходит по магнитопроводу, поэтому индуктивность рассеяния у них минимальная, однако сложность изготовления обмоток весьма высока.

На основании вышесказанного выбираем стержневой ленточный магнитопровод . Подобные магнитопроводы изготавливают следующих типов: ПЛ-стержневой ленточный; ПЛВ - стержневой ленточный наименьшей массы; ПЛМ - стержневой ленточный с уменьшенным расходом меди; ПЛР - стержневой ленточный наименьшей стоимости.

На рис. 3 показаны обозначения габаритных размеров магнитопровода: А - ширина; Н - высота; а - толщина стержня; b - ширина ленты; с - ширина окна; h - высота окна; h1 - высота ярма.

Стержневым магнитопроводам присвоено сокращенное обозначение, например, ПЛ8х 12,5x16, где ПЛ - П-образный ленточный, 8 - толщина стержня, 12,5 - ширина ленты, 16 - высота окна. Размеры магнитопроводов ПЛ и ПЛР приведены в табл. 1 и 2.

Варианты размещения катушек на магнитопроводе

Различные варианты расположения катушек на стержнях магнитопровода сравним по одному из основных параметров трансформаторов - индуктивности рассеяния, которую рассчитаем по формуле из

где μ0 = 4π·10-7 Гн/м - магнитная постоянная; w, - число витков первичной обмотки; вср.об - средняя длина витка обмоток, см; b - толщина обмоток, см; h - высота обмотки, см. Эта формула получена при условии, что обмотки - цилиндрические, не секционированы и расположены концентрически. Схемы соединения обмоток для всех вариантов показаны на рис. 4.

Сравнительные расчеты проведем для трансформатора на магнитопроводе ПЛx10x12,5x40, имеющего одну первичную и одну вторичную обмотки. Чтобы все расчетные варианты находились в одинаковых условиях, примем толщину обмоток b = с/4 и число витков первичной обмотки w1 = 1000.

Рассмотрим первый вариант, когда первичная и вторичная обмотки расположены на одном стержне (рис. 4, а). Чертеж катушки показан на рис. 5. Сначала рассчитаем среднюю длину витка обмоток

а затем индуктивность рассеяния катушки первого варианта

Во втором варианте первичная и вторичная обмотки разделены на две равные части, которые размещены на двух стержнях (рис. 4, б). Каждая катушка состоит из половины обмотки W1 и половины w2. Чертеж катушек показан на рис. 6. Вычислим индуктивность рассеяния одной катушки (W1 = 500), а затем результат удвоим, поскольку катушки одинаковы:

Две первичные обмотки в третьем варианте расположены в двух катушках на разных стержнях, каждая из которых содержит по 1000 витков. Обе первичные обмотки соединены параллельно. Вторичная обмотка также размещена в двух катушках на разных стержнях, причем возможны два случая: две полуобмотки с полным числом витков, соединенные параллельно (рис. 4, в), или вторичная обмотка разделена на две полуобмотки с вдвое меньшим числом витков, соединенные последовательно (рис. 4, г). Чертеж катушек показан на рис. 6. В этом варианте индуктивность рассеяния такая же, как и во втором варианте: LS3 = LS2 = 2,13 мГн.

Следует помнить, что во втором и третьем вариантах первичные и вторичные обмотки и полуобмотки должны быть включены согласно, чтобы создаваемые ими магнитные потоки в магнитопроводе имели одинаковое направление. Другими словами, магнитные потоки должны суммироваться, а не вычитаться. На рис. 7, а показано неправильное подключение, а на рис. 7, б - правильное.

Необходимость соблюдения правил соединения обмоток и полуобмоток - недостаток второго и третьего вариантов. Кроме того, в третьем варианте суммарный магнитный поток от первичной обмотки вдвое больше по сравнению с другими, что может привести к насыщению магнитопровода и, как следствие, к искажению синусоидальной формы напряжения. Поэтому применять третий вариант включения обмоток на практике следует осторожно.

В четвертом варианте первичная обмотка полностью расположена на одном стержне магнитопровода, а вторичная - на другом (рис. 4, д). Чертеж катушек показан на рис. 8. Поскольку обмотки расположены не концентрически, для расчета индуктивности рассеяния воспользуемся формулой из :

где b = с/4 - толщина обмоток, см; Rвн = воб/(2π) - внешний радиус обмотки, см; воб = 2а+2b+2πb - наружная длина витка обмотки, см. Вычислим наружную длину витка и внешний радиус обмотки: = 6,5 см; Rвн = 1,04 см. Подставляя рассчитанные значения в формулу для вычисления индуктивности рассеяния, получим LS4 = 88,2 мГн.

Кроме рассмотренных четырех существует еще много других вариантов расположения обмоток на стержнях магнитопровода, однако во всех остальных случаях индуктивность рассеяния больше, чем во втором и третьем вариантах.

Анализируя полученные результаты, можно сделать следующие выводы:

  1. Индуктивность рассеяния минимальна во втором и третьем вариантах расположения обмоток и находится в таком соотношении: LS4>>LS1>>LS2 = LS3.
  2. У трансформаторов третьего варианта две одинаковые первичные обмотки, поэтому они более тяжелые, трудоемкие и дорогие, чем во втором варианте.

Следовательно, при изготовлении трансформаторов малой мощности следует выбирать схему соединения и расположение обмоток, рассмотренные во втором варианте. Вторичные полуобмотки можно соединять и последовательно, если необходимо получить более высокое напряжение на выходе, и параллельно, если требуется больший выходной ток.

Краткие сведения о материалах магнитопроводов

До сих пор мы не учитывали потери в реальном трансформаторе, которые складываются из потерь в магнитопроводе - на вихревой ток и перемагничивание (гистерезис): в расчетах их учитывают как мощность потерь в стали Рст, и потери в обмотках - как мощность потерь в меди Рм. Итак, суммарная мощность потерь в трансформаторе равна:

P∑ = Рст + Рм = Рв.т + Рг + Рм,

где Рв.т - мощность потерь на вихревой ток; Рг - мощность потерь на гистерезис.

Для их уменьшения сталь подвергают термообработке - удаляют углерод, а также легируют - добавляют кремний, алюминий, медь и другие элементы. Все это повышает магнитную проницаемость, уменьшает коэрцитивную силу и, соответственно, потери на гистерезис. Кроме того, сталь подвергают холодной или горячей прокатке для получения необходимой структуры (текстуры проката).

В зависимости от содержания легирующих элементов, структурного состояния, магнитных свойств стали маркируют четырехзначными числами, например, 3412.

Первая цифра означает класс электротехнической стали по структурному состоянию и классу прокатки: 1 - горячекатаная изотропная; 2 - холоднокатаная изотропная; 3 - холоднокатаная анизотропная с ребровой текстурой.

Вторая цифра - процент содержания кремния: 0 - нелегированная сталь с суммарной массой легирующих элементов не более 0,5 %; 1 - легированная с суммарной массой свыше 0,5, но не более 0,8 %; 2 - 0,8...1,8 %; 3 - 1,8...2,8 %; 4 - 2,8...3,8 %; 5 - 3,8...4,8 %.

Третья цифра - группа по основной нормируемой характеристике (удельные потери и магнитная индукция): 0 - удельные потери при магнитной индукции 1,7 Тл на частоте 50 Гц (Pij/so); 1 - потери при магнитной индукции 1,5 Тл на частоте 50 Гц (P1,5/50); 2 - при индукции 1 Тл на частоте 400 Гц (Р1/400); 6 - индукция в слабых магнитных полях при напряженности 0,4 А/м (В0,4); 7 - индукция в средних магнитных полях при напряженности 10 А/м (В10) или 5 А/м (В5).

Первые три цифры обозначают тип электротехнической стали.

Четвертая цифра - порядковый номер типа стали.

Магнитопроводы трансформаторов для бытовой техники изготавливают из холоднокатаной текстурованной стали марок 3411-3415 с нормированными удельными потерями при магнитной индукции 1,5 Тл на частоте 50 Гц и удельным сопротивлением 60·10-8 Ом·м. Параметры некоторых марок электротехнической стали приведены в табл. 3.

Холоднокатаная электротехническая сталь обладает более высокими магнитными характеристиками. Кроме того, более гладкая поверхность позволяет увеличить коэффициент заполнения объема магнитопровода (ксТ) до 98 % .

Исходные данные для расчета трансформатора

Рассчитаем трансформатор, имеющий первичную и две одинаковые вторичные обмотки, со следующими параметрами: эффективное (действующее) напряжение первичной обмотки U1 = 220 В; эффективное (действующее) напряжение вторичных обмоток U2 = U3 = 24 В;

эффективный (действующий) ток вторичных обмоток l2 = I3 = 2А. Частота сетевого напряжения f = 50 Гц.

Коэффициент трансформации равен отношению напряжения на первичной к напряжению на разомкнутой (ЭДС) вторичной обмотке. При этом пренебрегают погрешностью, возникающей из-за отличия ЭДС от напряжения на первичной обмотке:

где w1 и w2 - число витков, соответственно, первичной и вторичной обмоток; Е1 и Е2 - ЭДС первичной и вторичной обмоток.

Ток в первичной обмотке равен:

Габаритная мощность трансформатора равна:

В процессе расчета необходимо определить размеры магнитопровода, число витков всех обмоток, диаметр и примерную длину обмоточного провода, мощность потерь, полную мощность трансформатора, КПД, максимальные габариты и массу.

Расчет магнитопровода трансформатора

Методика расчета размеров и других параметров взята, в основном, из .

Сначала рассчитаем произведение площади поперечного сечения стержня на площадь окна магнитопровода. Стержнем называют участок магнитопровода (axbxh), на котором размещена катушка:

где В - магнитная индукция, Тл; j - плотность тока в обмотках, А/мм2; η - КПД трансформатора, n - число стержней магнитопровода; кс - коэффициент заполнения сечения магнитопровода сталью; км - коэффициент заполнения окна магнитопровода медью.

Коэффициент заполнения сечения магнитопровода для сталей 3411-3415 равен 0,95...0,97, а для сталей 1511-1514 - 0,89...0,93.

Для расчета принимаем В = 1,35 Тл; j = 2,5 А/мм2; η = 0,95; Кc = 0,96; км = 0,31; n = 2:

Толщину стержня магнитопровода вычисляют по формуле

Подходящий магнитопровод выбирают по табл. 1 и 2. При выборе следует стремиться к тому, чтобы сечение магнитопровода было близко к квадрату, поскольку в этом случае расход обмоточного провода минимален.

Ширину ленты магнитопровода рассчитывают по формуле

Выбираем магнитопровод ПЛР18х25, у которого а - 1,8 см; b = 2,5 см; h = 7,1см;

Расчет обмоток трансформатора

Вычислим ЭДС одного витка по формуле

Рассчитаем приблизительно падение напряжения на обмотках:

Затем вычислим число витков первичной обмотки:

вторичных обмоток:

Рассчитаем диаметр обмоточного провода без изоляции по формуле

Подставив числовые значения, получим диаметр провода первичной:

и вторичных обмоток:

По табл. 5 выбираем марку и диаметр обмоточного провода в изоляции : для первичной обмотки - ПЭЛ или ПЭВ-1 di = 0,52 мм; для вторичных - ПЭЛ или ПЭВ-1 d2 = d3 = 1,07 мм.

Уточняем число витков обмоток. Для этого вначале уточним падение напряжения на обмотках:

Рассчитаем среднюю длину витка, используя рис. 5 или 6:

а затем и длину провода в обмотках:

Уточненные значения падения напряжения на обмотках равны:

С учетом полученных значений вычислим число витков первичной:

и вторичных обмоток:

Рассчитаем массу провода обмоток:

где m1 и m2 - погонная масса проводов, соответственно, первичной и вторичных обмоток из табл. 5.

Массу магнитопровода определяем по табл. 2: Мм = 713 г.

Масса трансформатора без учета массы деталей крепления равна М = = 288+2-165+713 = 1331 г. Максимальные размеры: (Ь+с)х(А+с)хН = 43x72x107 мм. Коэффициент трансформации k = W1/W2 = 1640/192 = 8,54.

Расчет мощности потерь

Потери в магнитопроводе равны:

где руд - удельные потери в магнитопроводе из табл. 3. Предположим, что магнитопровод изготовлен из стальной ленты 3413 толщиной 0,35 мм, тогда по табл. 3 находим, что удельные потери в таком магнитопроводе равны 1,3 Вт/кг. Соответственно, потери в магнитопроводе Рст = 0,713-1,3 = 0,93 Вт.

Потери в обмотке - на активном сопротивлении проводов - вычислим по формуле

где r1, r2 - активное сопротивление, соответственно, первичной и вторичных обмоток, I"1 - ток первичной обмотки с учетом потерь:

где r1м, r2м - погонное сопротивление проводов, соответственно, первичной и вторичных обмоток из табл. 5.

Пересчитаем ток вторичных обмоток в ток первичной обмотки:

Ток первичной обмотки с учетом потерь равен:

где η = 0,95 - КПД трансформатора из табл. 4 для мощности 100 Вт. Потери в обмотках равны:

Полная мощность трансформатора с учетом потерь равна:

КПД трансформатора рассчитаем по формуле

Изготовление трансформатора

Изготавливать трансформатор будем по второму варианту, рассмотренному выше. Расположение катушек показано на рис. 6. Для этого необходимо изготовить две катушки, каждая из которых содержит половину витков первинной и каждой из вторичных обмоток: w"1 = 820 витков провода ПЭЛ (или ПЭВ-1) диаметром 0,52 мм; w"2=w"3= 96 витков провода ПЭЛ (или ПЭВ-1) диаметром 1,07 мм.

Поскольку трансформатор имеет малые мощность и габариты, катушки можно изготовить бескаркасными. Толщина катушки b ≤ с/2 = 9 мм, ее высота hK ≤ 71 мм.

Число витков в слое первичной обмотки

число слоев

Число витков в слое вторичной обмотки

число слоев

Обмотки наматывают на деревянной оправке, изготовленной в точном соответствии с размерами участка магнитопровода, на котором будут расположены катушки (18x25x71 мм). К торцам оправки прикрепляют щечки.

Несмотря на то, что обмоточные провода покрыты эмалевой изоляцией и потому обладают высокой электрической прочностью, обычно между слоями обмотки прокладывают дополнительную, например, бумажную изоляцию. Чаще всего для изолирования обмоток от магнитопровода и между собой применяют трансформаторную бумагу толщиной 0,1 мм. Рассчитаем максимальное напряжение между двумя соседними слоями первичной обмотки

Поскольку напряжение между слоями небольшое, дополнительную изоляцию можно укладывать через слой или сделать ее более тонкой, например, использовать конденсаторную бумагу. Между первичной и вторичными следует поместить экранирующую обмотку - один незамкнутый виток тонкой медной фольги или один слой обмоточного провода, которая препятствует проникновению помех из сети во вторичные обмотки и наоборот.

Сначала оправку обматывают тремя слоями бумажной ленты (рис. 9), лепестки ленты приклеивают к щечкам. Затем наматывают первичную обмотку, прокладывая каждый слой изоляцией. Между первичной, экранирующей и вторичными обмотками прокладывают два слоя изоляции. Общая толщина изготовленных катушек не превышает 8 мм.

Проверка трансформатора

Собранный трансформатор сначала проверяют в режиме холостого хода - без нагрузки. При сетевом напряжении 220 В ток в первичной обмотке

напряжение на вторичных обмотках

Напряжение на вторичных обмотках можно точно измерить только вольтметром с высоким входным сопротивлением. Окончательно напряжение на вторичных обмотках трансформатора измеряют при номинальной нагрузке.

Литература

  1. Линде Д. П. и др. Справочник по радиоэлектронным устройствам. Под ред. А. А. Куликовского. Т. 2. - М.: Энергия, 1978.
  2. Горский А. Н. и др. Расчет электромагнитных элементов источников вторичного электропитания. - М.: Радио и связь, 1988.
  3. Сидоров И. Н. и др. Малогабаритные магнитопроводы и сердечники. Справочник. - М.: Радио и связь. 1989.
  4. Герасимов В. Г. и др. Электротехнический справочник. Т. 1. - М.: Энергия, 1980.
  5. Малинин Р. М. Справочник радиолюбителя-конструктора. - М.: Энергия, 1978

Смотрите другие статьи раздела .

Читайте и пишите полезные


Самое обсуждаемое
Брусничный чай: напиток из чудо-ягоды Брусничный чай: напиток из чудо-ягоды
День ангела марины по церковному календарю День ангела марины по церковному календарю
Леонид: значение имени, характер и судьба Леонид: значение имени, характер и судьба


top