Скачать расчет спринклерной системы пожаротушения excel. Расчет спринклерных и дренчерных установок. Дальнейший расчет установки связан с определением

Скачать расчет спринклерной системы пожаротушения excel. Расчет спринклерных и дренчерных установок. Дальнейший расчет установки связан с определением

Подбираем параметры основных водопитателей для установки водяного пожаротушения, защищающей склад хранения древесины (Р=180 кг/м 3).

Интенсивность орошения водой I=0,4 л/(м 2 . с) по таблице 5.2 для 6 группы помещений по степени опасности развития пожара.

Площадь орошения спринклерным оросителем F op =12 м 2 . Трассировка трубопроводов и места размещение оросителей на плане показаны на листе 1 графической части.

Выбираем тип оросителя и его основные параметры. Для этого определимтребуемые напор и расход на диктующем оросителе.

На основании полученных расчетов применяем в проектируемой установке спринклерный ороситель СВН-15.

Уточняем расход из оросителя:

С определенным коэффициентом запаса принимаем л/с (хотя эта процедура никаким нормативным документом не прописана, а следовательно расход можно и не увеличивать).

Таким образом, получаем начальные гидравлические параметры у диктующего оросителя:

Для левой ветви распределительного трубопровода принимаем следующие параметры трубопроводов:

участок 1-2: мм;

участок 2-3: мм;

участок 3-4: мм;

участок 4-а: мм.

При проектировании распределительных, питающих и подводящих сетей необходимо исходить из тех соображений, что водяные и пенные АУП эксплуатируются, как правило, довольно длительное время без замены трубопроводов. Поэтому, если ориентироваться на удельное гидравлическое сопротивление новых труб, через определенное время их шероховатость увеличивается, вследствие чего распределительная сеть уже не будет соответствовать расчетным параметрам по расходу и давлению. В связи с этим принимается средняя шероховатость труб. Значение удельного сопротивления А принимается по таблице V.1. настоящего пособия.

Расход первого оросителя 1 является расчетным значением на участке между первым и вторым оросителями.

Таким образом, падение давления на участке составит:

Давление у оросителя 2:

Расход оросителя 2:

Расчетный расход на участке между первым и вторым оросителями, т.е. на участке составит:

Давление оросителя 3:

Расход оросителя 3:

Расчетный расход на участке между первым и третьим оросителями, т.е. на участке, составит:

По расходу воды определяются потери давления на участке:

Потери давления на участке водопровода при мм очень высокие, поэтому на участке принимаем диаметр трубопровода мм. Тогда:

Давление оросителя 4:

Расход оросителя 4:

Таким образом, даже незначительное изменение спецификации распределительного и питающего трубопроводов в сторону уменьшения диаметра приводит к достаточно существенному изменению давления, что требует использования пожарного насоса с большим давлением подачи.

Расчетный расход на участке между первым и четвертым оросителями, т.е. на участке, составит:

По расходу воды определяются потери давления на участке (м) :

Давление в точке а:

Участок принимаем аналогичным участку, т.е. диаметры и длина трубопроводов будут равны:

участок а-5: мм; м;

участок 5-6: мм; м;

участок 6-7: мм; м.

В рядке I правая ветвь несимметрична левой ветви. Удельное гидравлическое сопротивление (или удельная гидравлическая характеристика) правой ветви распределительного трубопровода зависит от диаметров участка трубопровода между оросителями 7-6, 6-5 и между оросителем 5 и т. а (5-а).

Давление правой ветви рядка I с оросителями 5-7 в т. а должно быть равно давлению левой ветви рядка I с оросителями 1-4, т.е. МПа.

Расход в правой ветви рядка I при давлении 0,272 МПа составит:

где В а-7 - гидравлическая характеристика правой ветви рядка I.

При условии симметричности левой и правой ветвей рядка I (по три оросителя в каждой ветви) расход должен быть аналогичным расходу, т.е. =7,746 л/с.

Давление оросителя 5 аналогично давлению у оросителя 3, т.е. МПа.

Тогда давление в т. а для правой ветки рядка I составит:

Гидравлическая характеристика правой ветви рядка I:

Таким образом, расчетный расход правой ветки рядка I составит:

Общий расход рядка I:

т.е. истинный максимальный расход АУП будет составлять не 10, а 29,2 л/с.

Принимается диаметр питающего трубопровода на участке мм.

По расходу определяются потери давления на участке:

Поскольку потери давления на участке достаточно велики, то принимаем диаметр питающего трубопровода мм.

Тогда потери давления на участке составят:

Давление в т. b составит:

Общий расход двух рядков:

Расчет всех следующих рядков, если они выполнены конструктивно одинаково, проводится по аналогичному алгоритму.

Так как гидравлические характеристики рядков, выполненных конструктивно одинаково, равны, характеристика рядка II определяется по обобщенной характеристике расчетного участка трубопровода рядка I:

Расход воды из рядка II определяется по формуле:

Относительный коэффициент расходов II и I рядков:

По расходу определяются потери давления на участке:

Давление в т. с составит:

Так как гидравлические характеристики рядков, выполненных конструктивно одинаково, равны, характеристика рядка III определяется по обобщенной характеристике расчетного участка трубопровода рядка II:

Расход воды из рядка III определяется по формуле:

Общий расход трех рядков:

По ранее действующим НПБ 88 расход спринклерной АУП определяется как произведение нормативной интенсивности орошения на площадь для расчета расхода воды, т.е. расход должен быть равен:

Если для спринклерной АУП условно площадь для расчета расхода принять 160 м 2 , то её общий расход из трех рядков составит не л/с, а 93,2 л/с.

Требуемое давление (напор), которое должна обеспечить насосная установка, определяется по формуле

P=P O +P T +P M +P УУ +P H +P Z +P ВХ

Требуется подобрать насос для спринклерной установки со следующими параметрами гидравлической сети:

общий расход АУП составляет 36 м 3 /ч

давление у диктующего оросителя P O =0,075 МПа

линейные потери давления в подводящем и питающем трубопроводе P T =0,942 МПа

местные потери давления в трубопроводе P M =0,001 МПа

потери давления в спринклерном узле управления P УУ =0,19 МПа

потери давления в насосной установке P H =0,6 МПа

давление эквивалентное геометрической высоте диктующего оросителя P Z =0,0036 МПа

давление внешней магистральной сети P ВХ =0,642 МПа

Р=0,075+0,942+0,001+0,19+0,6+0,0036-0,642=1,17 МПа

По расходу Q=93,2 л/с и давлению Р=1,17 МПа из каталога выбираем два насоса марки ТП(Д) 200 - 660 (с числом оборотов 2900 об/мин), один основной, второй резервный.

Спринклерная система водяного пожаротушения практична и функциональна. Она применяется в рамках развлекательных объектов, хозяйственных и производственных построек. Основная особенность спринклерных линий — наличие оросителей с полимерными вставками. Под воздействием высоких температур вставка сплавляется, активируя процесс пожаротушения.

Схема спринклерной системы пожаротушения

В состав типовой системы входят следующие элементы.

  • Управляющие модули.
  • Трубопровод.
  • Спринклерные оросители.
  • Управляющий модуль.
  • Задвижки.
  • Импульсный модуль.
  • Компрессорное оборудование.
  • Измерительные приборы.
  • Насосная установка.

При расчете систем тушения пожара учитываются параметры помещения (площадь, высота потолков, планировка), предписания отраслевых нормативов, требования технического задания.

Расчет спринклерных установок водяного пожаротушения должны осуществлять квалифицированные специалисты. Они располагают профильными измерительными приборами и необходимым программным обеспечением.

Преимущества системы

Спринклерные системы пожаротушения обладают множеством достоинств.

  • Автоматическое срабатывание при возникновении возгорания.
  • Простота основных рабочих схем.
  • Сохранение эксплуатационных характеристик на протяжении длительного срока.
  • Удобство обслуживания.
  • Приемлемая стоимость.

Недостатки системы

К минусам спринклерных систем относится.

  • Зависимость от штатной линии подачи воды.
  • Невозможность применения на объектах с высокой степенью электрификации.
  • Сложности при использовании в условиях отрицательных температур (требуется применение воздушно-водных решений).
  • Непригодность оросителей к повторному использованию.

Пример расчета спринклерной установки водяного пожаротушения

Гидравлический расчет спринклерной системы пожаротушения позволяет определить рабочие показатели давления, оптимальный диаметр трубопровода и производительность линии.

При расчете спринклерного пожаротушения в части расхода воды используется следующая формула:

Q=q p *S, где:

  • Q — производительность оросителя;
  • S — площадь целевого объекта.

Расход воды измеряется в литрах в секунду.

Расчет производительности оросителя производится по формуле:

q p = J p * F p , где

  • J p — интенсивность орошения, установленная нормативными документами, в соответствии с типом помещения;
  • F p — площадь покрытия одного спринклера.

Коэффициент производительности оросителя представлен в виде числа, не сопровождается единицами измерения.

При расчете системы инженеры определяют диаметр выходных отверстий оросителей, расход материалов, оптимальные технологические решения.

Если вам требуется расчет спринклерной системы пожаротушения, обратитесь к сотрудникам «Теплоогнезащита». Специалисты быстро справятся с задачей, предоставят рекомендации по решению типовых и нестандартных вопросов.

Характеристики объекта

По степени опасности развития пожара, здание относится к 1-й группе (приложение «Б» СП 5.13130.2009):

Интенсивность орошения - 0,08 л/(с*м2);

Площадь для расчета расхода воды - 60 м2;

Продолжительность работы - 30 мин.

Однако, принимая во внимание примечания 3, 4 приложения «Б» СП 5.13130.2009, все складские помещения, расположенные в здании, относятся ко 2-й группе:

Интенсивность орошения - 0,18 л/(с*м2);

Расчетный расход воды не менее - 45 л/с;

Площадь для расчета расхода воды - 120 м2;

Продолжительность работы - 60 мин.

Предусматривается водозаполненная спринклерная установка.

В соответствии с требованиями п. 4.1.6 СП 10.13130.2009, для частей зданий различного назначения необходимость устройства внутреннего противопожарного водопровода и расхода воды на пожаротушение надлежит принимать отдельно для каждой части здания.

При этом, расход воды для зданий, не имеющих противопожарных стен, следует принимать по общему объему здания.

Согласно п. 4.1.1, 4.1.4 и таблиц 1,2,3 СП 10.13130.2009, расход воды для внутреннего пожаротушения из пожарных кранов принят:

Для общественных помещений 2 струи с расходом не менее 2,6 л/с, при этом диаметр крана принят 50 мм, диаметр спрыска ствола 16 мм, длина рукава 20 м, напор у пожарного крана Юм.вод.ст.;

Для складских помеещний помещений 2 струи с расходом не менее 5,2 л/с, при этом диаметр крана принят 65 мм, диаметр спрыска ствола 19 мм, длина рукава 20 м, напор у пожарного крана 24м.вод.ст.;

Внутренняя сеть пожарных кранов присоединяется к распределительной гребенке спринклерной системы.

Свободный напор у пожарных кранов предусмотрен таким образом, чтобы получаемая компактная струя орошала наиболее высокую часть расчетного помещения.

Для обеспечения работы установки, предусмотрена установка насосов, пуск которых предусмотрен автоматическим, с дистанционным дублированием (для пуска и остановки) из помещений пожарного поста и насосной.

Пожарные насосные агрегаты имеют 100 % резерв и устанавливаются в отдельном помещении.

Для присоединения рукавов передвижных пожарных насосов от напорной линии, между насосами и узлами управления, наружу выведены патрубки диаметром 80 мм с обратными клапанами и стандартными соединительными пожарными головками.

В установке применен сигнальный клапан диаметром 100 мм.

Каждый этаж оборудуется сигнализаторами потока жидкости.

В качестве оросителей приняты:

В складских помещениях водяные спринклерные (с колбой 5мм) оросители фирмы «TYCO» с плоской розеткой TY4251, 57°С, К=115 (0,61), установка розеткой вниз;

В остальных помещениях водяные спринклерные (с колбой 5мм) оросители фирмы «TYCO» с плоской розеткой TY3251, 57°С, К=80 (0,42), установка розеткой вниз.

Планировка оросителей и их количество принимаются из расчета обеспечения необходимой интенсивности орошения в защищаемых помещениях. Расстояния между оросителями принимаются с учетом нормативных требований, конструкции перекрытия, расположения вентиляции и светильников.

Количество оросителей на одном узле управления не превышает 1200 шт. (п. 5.2.3 СП 5.13130.2009).

Расчет установки пожаротушения

Общие положения

Диктующей секцией выбираем склад третий этаж.

Расчет распределительной сети производиться из условия срабатыва ния всех оросителей (TY4251), смонтированных на расчетной площади 120м и пожарных кранов.

С учетом геометрии распыла применяемых оросителей, количество оросителей, защищающих диктующую зону площадью 120м2, составляет 16 штук.

В случае, если полученное расчетным путем значение расхода со спринклерных оросителей, расположенных в диктующей секции установки, будет менее 45л/с, то в расчете принимается минимальное нормативное значение - 45л/с (п.5.1.4, табл. 5.1 СП 5.13130.2009).

3.2. Определение диктующего напора и расхода

Указанная интенсивность (0,18л/(с*м2)) при защищаемой площади (по плану расположения оборудования - 9м2) одним оросителем в диктующей секции будет обеспечена при давлении у оросителя 0,21 МПа.

Таким образом, расход из "диктующего" оросителя составит:

Q, =10*К7Р = 10*0,61 . V02l = 2,79л/с;

Падение давления на участке между первым и вторым оросителями составит:

р\-2 = 4/50 . QГ * А-2 = 0-0078 . 2,79: . 3,0 = 0,001 8М7я,

где А(15о - удельное гидравлическое сопротивление трубопровода (при условном диаметре трубопровода 50мм), с2/л6. Учитывая, что установка эксплуатируется, как правило, довольно длительное время без замены трубопроводов, через определенное время их шероховатость увеличится, вследствие чего распределительная сеть уже не будет соответствовать расчетным параметрам по расходу и давлению. В связи с этим принимается средняя шероховатость труб.

Диаметр распределительных рядков выбирается по числу установленных на них оросителей, учитывая что скорость воды в них не должна превышать 10м/с.

Полный расчет можно скачать после регистрации



1. Расчет спринклерной установки

Порядок расчета спринклерных и дренчерных установок следую­щий:

1. Определяется группа помещений по степени опасности развития пожара, к кото­рой относится проектируемое помещение, производство или техно­логический процесс.

Для пожарной нагрузки 350 МДж·м -2 принимаем 2-ю группу помещений.

2. Определяются требуемые параметры водяной или пенной ус­тановки пожаротушения.

Для 2-й группы помещения и огнегасительного вещества имеем:

Интенсивность орошения Ј р , не менее 0,12 л/с·м 2 ;

Площади, защищаемая одним спринкерным гасителем, F р ; 12 м 2 ;

Продолжительность работы установки, 60 мин;

Расстояние между гасителями, L с , 4 м.

3. Определяется требуемая производительность оросителя по формуле:

,

л/с

4. Определяется требуемый коэффициент производительности оросителя, по формуле:

,

где h - свободный напор перед оросителем, принимается равным 5 м.

5. По расчетному значению требуемого коэффициента производительности принимается диаметр выходного отверстия оросителя из условия К > Кр . Принимаем К=0,71 , тогда диаметр выходного отверстия будет равен 15 мм.

6. Уточняется напор перед оросителем (генератором) по формуле:

,

м.

7. Определяется количество оросителей по формуле:

где m - количество рядов;

n - количество оросителей в ряду.

где а и в - длина и ширина защищаемого помещения от пожара, а = 42 м; в = 14 м.

,

Определяется количество оросителей, участвующих в локализации и тушении пожара:

9.Составляется расчетная схема водяной установки пожаротушения.

При разработке схемы трассировки распределительных трубопроводов необходимо стремиться к выбору такой схему, при которой обеспечивалась бы подача воды с наименьшими потерями напора в сети при возможно меньшем диаметре труб.

Принимается следующий вариант:

10. Производится гидравлический расчет водяной установка.

Гидравлический расчет заключается в определении параметров основного водопитания в зависимости от высоты подъема распределительных трубопроводов с оросителями, свободного напора у "диктующего" оросителя и потерь напора в сети на участке между водопитателем и "диктующим" оросителем.

Рис. 1 Расчетная схема спринклерной установки.

Гидравлические расчеты в сети сведём в таблицу 1.

Таблица 1 Гидравлический расчёт спринклерной установки

Участков

l i м

Диаметр условного прохода

d i мм

Потери напора на уч - ке

Напор в расч. точках

L j м

Расход воды в расч. точках

q j л/с

Расход воды на уч –х

q i л/с

Гидравлический расчет спринклерной или дренчерной сети имеет своей целью:

Определение расхода воды, т.е. интенсивности орошения или удельного расхода, у "диктующих" оросителей (наиболее удаленных или высоко расположенных);

Сравнение удельного расхода (интенсивности орошения) с требуемым (нормативным), а также определение необходимого давления (напора) у водопитателей и наиболее экономных диаметров труб.

Подробная методика расчета гидравлических сетей спринклерных и дренчерных установок пожаротушения водой и водными растворами, агрегатных АУП тонкораспыленной водой, АУП с принудительным пуском и спринклерно-дренчерных АУП приведена в приложении В. Ответственным этапом гидравлического расчета является выбор оросителя и определение давления, которое необходимо обеспечить у "диктующего" оросителя.

При определении параметров оросителя необходимо учитывать некоторые технические характеристики, которыми являются:

Расход огнетушащего вещества;

Интенсивность орошения;

Максимальная площадь орошения, в пределах которой обеспечивается требуемая интенсивность, расстояние между оросителями.

Расход оросителя Q (дм3/с) определяется по формуле:

где К - коэффициент производительности,

Р - давление перед оросителем, МПа.

Важнейший параметр - коэффициент производительности, то есть способность оросителя пропустить через себя определенное количество воды, в свою очередь, зависит от величины выходного отверстия оросителя: чем больше отверстие, тем больше коэффициент.

Для вычисления расхода Q, нужно определить необходимое давление Р у оросителя при заданной интенсивности орошения.

Один из способов определения необходимого давления у оросителя, это определение давление по графику зависимости интенсивности орошения оросителей от давления (рис. 4.1), приведенный в технической документации. По графику, по определенной интенсивности и выбранному диаметру условного прохода оросителя определяют необходимое минимальное давление.

Как видно из графика для интенсивности орошения 0,12 дм 3 /м 2 подходят три типа оросителя - «СВН-К115», «СВН-К80» и «СВН-К57». Выбирают ороситель, который обеспечивает заданную интенсивность при меньшем давлении, в нашем случае это «СВН-К115» по паспорту CBO0-PHо(д)0,59-R1/2/P57.B3 - (диаметр выходного отверстия 15мм., коэффициент производительности К = 0,59). При выборе оросителя нужно, также учитывать, что минимальное давление у большинства оросителей, при котором обеспечивается работоспособность оросителя, согласно паспортным данным 0,1 Мпа.

Ороситель «СВН-К115» обеспечивает интенсивность орошения 0,12 дм 3 /м 2 при давлении 0,17 МПа (рис. 4.1).


Рис. 4.1. График зависимости интенсивности орошения оросителей от давления.

Согласно расчет расхода установки определяют из условия одновременной работы всех спринклерных оросителей смонтированной на защищаемой диктующей площади, определенной по таблице 5.1-5.3, с учетом того обстоятельства, что расход оросителей, установленных вдоль распределительных труб, возрастает по мере удаления от "диктующего" оросителя. При этом общая защищаемая площадь может быть во много раз больше, а количество оросителей - достигать 800 или 1200 при использовании сигнализаторов потока жидкости.

Расстановка оросителей производится с учетом максимального расстояния, рассчитывается расход воды в пределах защищаемой диктующей площади установленной в таблице 5.1. Производится проверка расчета распределительной сети спринклерной АУП из условия срабатывания такого количества оросителей, суммарный расход которых на принятой защищаемой орошаемой площади составят не менее нормативных значений расход огнетушащего вещества приведенный в таблицах 5.1-5.3. Если при этом расход будет менее указанной в таблицах 5.1-5.3, то расчет должен быть повторен при увеличении количестве числа оросителей и диаметров трубопроводов распределительной сети. Пересчет сети, может повторятся многократно.

Авторами пособия, для упрощения, при произведении гидравлического расчета в учебных целях, предлагается определять количество оросителей для защиты минимальной диктующей площади и их расстановки по формуле:

где q 1 — расход ОТВ через диктующий ороситель, л/с;

Q н — нормативный расход спринклерной АУП согласно таблицам 5.1-5.3 СП-5.13130.2009

В результате этого допущения, итоговый расчетный расход на 10-15% будет превышать нормативный, но сам расчет значительно упрощается.

Для примера произведем расстановку оросителей автоматической установки водяного пожаротушения текстильного предприятия с параметрами установки:

Интенсивность орошения водой - 0,12 л/(с*м 2);

Расход огнетушащего вещества - не менее 30 л/с;

Минимальная площадь орошения - не менее 120 м 2 ;

Максимальное расстояние между оросителями - не более 4 м;

Минимальное давление, которое необходимо обеспечить у диктующего оросителя Р = 0.17 Мпа (Рис.4.1.);

Расчетный расход воды через диктующий ороситель, расположенный в диктующей защищаемой орошаемой площади, определяется по формуле:

K — коэффициент производительности оросителя, принимаемый по технической документации на изделие, л/(с·МПа 0,5);

Минимальное расчетное количество оросителей необходимое для защиты диктующей площади:

где Q н = 30 л/с — нормативный расход спринклерной АУП согласно таблицам 5.1.

Расстановка оросителей, на выделенной минимальной диктующей площади представлена на рис. 4.2. При расстановке необходимо учитывать, что расстояние между оросителями не должно превышать нормативные расстояния указанные в таблицах 5.1.

Рис. 4.2 Схема размещения оросителей

Дальнейший расчет установки связан с определением:

Диаметров трубопроводов;

Давления в узловых точках;

Потерь давления в трубопроводах, узле управления и запорной арматуре;

Расхода на последующих от диктующего оросителях в пределах защищаемой площади;

Определение суммарного расчетного расхода установки.

Для наглядности трассировка трубопроводной сети по объекту защиты изображается в аксонометрическом виде (рис. 4.3).

Рис.4.3 Аксонометрический вид спринклерной установки водяного пожаротушения по симметричной тупиковой схеме

Компоновка оросителей на распределительном трубопроводе АУП согласно может выполнятся по тупиковой или кольцевой схеме, симметричная и несимметричная. На рис. 4.3 представлена спринклерная установка водяного пожаротушения по симметричной тупиковой схеме, на рис. 4.4. по кольцевой несимметричной схеме.

Рис.4.4 Аксонометрический вид спринклерной установки водяного пожаротушения по несимметричной кольцевой схеме

Диаметр трубопроводов может назначаться проектировщиком либо рассчитываться по формуле:

где d — диаметр определяемого участка трубопровода, мм;

Q — расход на определяемом участке трубопровода, л/с;

v — скорость движения воды, должна составлять не более 10 м/с, а во всасывающих — не более 2,8 м/с;

Потери давления на участке трубопровода определяется по формуле:

где L - длина трубопроводного участка в котором рассчитываются потери давления;

К т удельная характеристика трубопровода, определяется по таблице В.2 Приложения В.

После определения давления в точке а (рис.4.3) и суммарного расхода оросителей первого рядка определяется обобщенная характеристика первого рядка по формуле:

Поскольку второй и третий рядки идентичны первому, после расчета потерь давления между первым и вторыми рядками, обобщенная характеристика используется для определения расхода второго рядка. Расход третьего рядка рассчитывается аналогично.

Давление пожарного насоса, по схеме, представленной на рис. 4.3, складывается из следующих составляющих:

где Р е — требуемое давление пожарного насоса, МПа;

Р в-г — потери давления на горизонтальном участке трубопровода, МПа;

Р г-д — потери давления на вертикальном участке трубопровода, МПа;

Р М — потери давления в местных сопротивлениях (фасонных деталях), МПа,;

Р уу — местные сопротивления в узле управления (сигнальном клапане, задвижках, затворах), МПа;

Р в — давление у диктующей защищаемой площади, МПа;

Z — пьезометрическое давление (геометрическая высота диктующего оросителя над осью пожарного насоса), Мпа; Z = Н /100;

P ВХ — давление на входе пожарного насоса (определяется согласно варианту), Мпа.


Самое обсуждаемое
Астрология флирта: как соблазнить мужчину по знаку зодиака Как соблазнить парня зная кто он по знаку зодиака Астрология флирта: как соблазнить мужчину по знаку зодиака Как соблазнить парня зная кто он по знаку зодиака
Самая большая в мире морская звезда Самая большая в мире морская звезда
Реферат: Проектирование рыбопитомника на р Реферат: Проектирование рыбопитомника на р


top