Анализирующее моногибридное скрещивание. Закон расщепления в моногибридном скрещивании. Соотношение генотипов аа х аа

Анализирующее моногибридное скрещивание. Закон расщепления в моногибридном скрещивании. Соотношение генотипов аа х аа

Свои исследования Г. Мендель начал со скрещивания и изучения потомства сортов гороха, отличающихся только по одному признаку. Такое скрещивание называется моногибридным. Рассмотрим пример с сортами гороха, имеющими желтые и зеленые семена.

Перед тем как приступить к скрещиванию, Мендель убеждался в чистоте линии, проводя многократные повторные самоопыления и получал однородное потомство. Далее он приступил к гибридизации чистых линий. Первым этапом было удаление пыльцы у одного сорта до того, как могло произойти самоопыление. Далее Мендель кисточкой наносил пыльцу на рыльца пестиков растений другого сорта (эти растения он называл "женскими"). На искусственно опыленные растения он надевал колпачки, чтобы на рыльца пестиков не могла попасть пыльца с других растений. Также он проводил реципрокные скрещивания, то есть "женские" растения с зелеными семенами он опылял пыльцой гороха с желтыми семенами и наоборот для того, чтобы установить, зависит ли наследование признака от того, кому из родителей он принадлежит. Во всех случаях из семян, собранных из полученных гибридов (первого поколения), вырастали растения с желтыми семенами. Этот признак Мендель назвал доминантным. Итак, признак родителей, появляющийся у гибридов первого поколения, называется доминантным. Мендель стал обозначать его заглавной буквой, например, А. В результате этих скрещиваний Мендель установил "правило доминирования и единообразия первого поколения", согласно которому все гибриды первого поколения приобретают одинаковые признаки, сходные с доминирующими признаками родителей.

На цветки растений первого поколения Мендель надел колпачки (чтобы не допустить перекрестного скрещивания) и дал им самоопылиться. Так Мендель получил гибриды второго поколения, часть которых имела желтые семена, а часть - зеленые. Это показало, что признаки в гибридах не исчезают, а переходят в латентное (скрытое) состояние. Такие признаки Мендель назвал рецессивными (обозначаются маленькой буквой - а). Количество гороха с желтыми семенами было больше, чем с зелеными. Их отношение составляло 2,98 к 1. Так как Мендель проводил исследования по семи различным признакам, он получил приблизительно аналогичные пропорции и в других случаях. Поэтому был сделан вывод, что количество растений с доминантным признаком относится к количеству растений с рецессивным признаком как 3:1. Итак, в потомстве гибридов первого поколения наблюдается расщепление признаков: три четверти потомков несут доминантный признак, а одна четвертая - рецессивный.

Продолжая исследования, Мендель произвел самоопыление у гибридов второго поколения. Горох с зеленой окраской семян (с рецессивным признаком), давали растения только с зелеными семенами. В 1902 году В. Бэтсон для определения такой формы наследования предложил термин "гомозиготность". Другая картина вскрылась, когда Мендель проанализировал потомство растений с желтыми семенами (доминантным признаком). Одна треть таких растения оказалась гомозиготной по доминантному признаку (давало потомство только с доминантным признаком), а две трети давали расщепление согласно второму закону Менделя (один к трем). Для такой формы наследования Бэтсон предложил термин "гетерозиготность". для определения различий растений по внешним признакам и по свойствам потомства, в 1903 году Иоганнсен ввел понятия о фенотипе и генотипе. Фенотип - это совокупность всех признаков организма, а генотип - весь набор генов данного организма. Как видно из приведенных выше примеров, под одинаковым фенотипом может скрываться разный генотип.

Для наглядного подтверждения этих законов были введены следующие условные обозначения: заглавная буква А - доминантный аллель, а - рецессивный. Так как каждый организм несет два аллеля одного гена, то организмы стали обозначать: АА - гомозигота по доминантному признаку, аа - гомозигота по рецессивному признаку, Аа - гетерозигота. Доминантные гомозиготы могут давать гаметы только типа А, рецессивные - только а, а гетерозиготы - оба вида гамет. Родителей стали обозначать заглавной буквой Р, а гибридов первого, второго и третьего поколений F1, F2 и F3 соответственно, q - гаметы. Знак * обозначает скрещивание, символ + - женский пол (зеркало Венеры), а >- мужской пол (щит и копье Марса). Скрещивание чистых линий можно записать в следующей форме:

По фенотипу не всегда удается определить генотип организма. Организм, фенотипически обладающий доминантным признаком, может быть гетерозиготным или гомозиготным по доминантному признаку. Для определения зиготности организма применяют анализирующее скрещивание. При анализирующем скрещивании организм скрещивают с организмом, гомозиготным по рецессивному данному признаку, и по потомству определяют зиготность родительского организма. Если в потомстве у определяемого организма присутствуют особи, фенотипически обладающие только доминантным признаком, то родительская особь - гомозиготна по доминантному аллелю, если же часть потомства обладает и рецессивным признаком, то определяемый организм гетерозиготен по данному признаку. Две схемы показывают оба случая анализирующего скрещивания.

Один ген может иметь не только два, но и несколько различных аллелей. Такое явление получило название множественности аллелей. Ярким примером множественности аллелей является окраска у кроликов. Аллелей существует 6 форм: дикая окраска (черный кролик), темная шиншилла (кролик серебристо-серого темного тона), шиншилла (серебристо-серый кролик), светлая шиншилла (кролик со светлой серебристо-серой шкуркой), горностаевая или гималайская (белый кролик с черными лапами, хвостом, ушами и кончиком морды и красными глазами) и альбинос (белый кролик с красными глазами). Каждый кролик может иметь только два аллеля данного гена, поэтому наследование ничем не отличается от наследования генов, имеющих только две аллельные формы.

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

25. Закономерности наследования. Моногибридное скрещивание

Вспомните!

Что такое ген?

Какой набор хромосом содержат половые клетки?

Закон единообразия гибридов первого поколения. Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному скрещиванию, в котором родительские особи отличались друг от друга по одному изучаемому признаку. Поскольку горох – самоопыляющееся растение, в пределах одного сорта не существует изменчивости по конкретному признаку: на растениях, выросших из жёлтых семян, всегда созревают жёлтые семена, а на растениях, выросших из зелёных, – зелёные. Учитывая это свойство, Мендель скрестил растения гороха, отличающиеся по цвету семян (рис. 75). Гибридные семена первого поколения все оказались жёлтого цвета. Аналогичные результаты Мендель получил, изучая наследование остальных пар признаков. Следовательно, у гибридов первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Явление преобладания у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным , а противоположный признак, не проявляющийся у гибридов, т. е. подавляемый, – рецессивным .

Рис. 75. Моногибридное скрещивание

В результате такого скрещивания была установлена важнейшая закономерность наследования, получившая название закона единообразия гибридов первого поколения , или закона доминирования (первый закон Менделя): при скрещивании двух гомозиготных организмов, обладающих альтернативными признаками, все гибриды первого поколения будут иметь признак одного из родителей, т. е. они будут единообразны по фенотипу . Впоследствии при изучении наследования разнообразных признаков у животных, растений, грибов было установлено, что явление доминирования широко распространено и является общей закономерностью для наследования многих признаков у большинства организмов.

Закон расщепления. Из гибридных семян гороха Мендель вырастил растения, которые в результате самоопыления произвели семена второго поколения (см. рис. 75). Среди них оказались не только жёлтые, но и зелёные семена, т. е. произошло расщепление потомства на две группы, одна из которых обладала доминантным признаком, а вторая – рецессивным. Причём это расщепление не было случайным, а подчинялось строгим количественным закономерностям: 3 / 4 семян оказались жёлтыми и 1 / 4 – зелёными. Таким образом, Мендель установил, что во втором поколении гибридов появляются особи с доминантными и рецессивными признаками, причём их соотношение 3:1 . Эта закономерность была названа законом расщепления , а впоследствии вторым законом Менделя (рис. 76).

Последующие исследования позволили установить, что законы Менделя имеют всеобщий характер для диплоидных организмов, размножающихся половым путём.

Аллельные гены. Мендель не ограничился изучением второго поколения гибридов. Чтобы выяснить, как будут наследоваться признаки в третьем поколении, он вырастил гибриды второго поколения и проанализировал потомство, которое получилось в результате самоопыления. Оказалось, что все растения, выросшие из зелёных семян, производят только зелёные семена, 1 / 3 растений, развивающихся из жёлтых семян, образуют только жёлтые, а оставшиеся 2 / 3 растений, выросших из жёлтых семян, дают жёлтые и зелёные семена в соотношении 3:1.

Чтобы объяснить закономерности наследования признаков у гороха, Мендель предположил, что развитие каждого признака определяется неким наследственным фактором, который впоследствии был назван геном . Мендель ввёл буквенные обозначения, которыми мы пользуемся и в настоящее время. Доминантные признаки и гены обычно обозначают прописными латинскими буквами (A, B, C ), а рецессивные – строчными (а, b, с ). В данном опыте жёлтая окраска – доминантный признак (А ), а зелёная – рецессивный (а ). Пару генов (А и а ), которые определяют альтернативные признаки, называют аллельными генами, а каждый член пары – аллелем. Аллели (от греч. allelon – взаимно) – это различные состояния гена, определяющие различные формы одного и того же признака . В данном примере ген, отвечающий за цвет семени, может находиться в двух аллельных вариантах: жёлтая окраска (А ) или зелёная окраска (а ).

Рис. 76. Моногибридное скрещивание. Результаты работы Г. Менделя

В результате анализа третьего поколения Мендель обнаружил, что организмы, одинаковые по внешнему виду, могут различаться по наследственным задаткам. Организмы, не дающие расщепления в следующем поколении, были названы гомозиготными (от греч. gomo – равный, zygota – оплодотворённая яйцеклетка), а организмы, в потомстве которых обнаруживается расщепление, назвали гетерозиготными (от греч. getero – разный). Гомозиготные организмы имеют одинаковые аллели одного гена – оба доминантных (АА ) или оба рецессивных (аа ).

Следует отметить, что, разбирая сейчас результаты скрещиваний, полученные Менделем, мы находимся в гораздо более выигрышном положении, чем был сам учёный в середине XIX в. В то время никто не знал о мейозе, локализации наследственной информации в хромосомах, гаплоидности и диплоидности организмов. Тем большую ценность имеют выводы, сделанные Менделем.

Закон чистоты гамет. Мендель предположил, что каждая клетка организма содержит по два наследственных фактора, причём при образовании гибридов эти факторы не смешиваются, а сохраняются в неизменном виде. Исчезновение одного из родительских признаков в первом поколении гибридов и появление его вновь во втором поколении подтверждало предположение Менделя, что наследственные факторы – это некие дискретные единицы, которые не «растворяются» и не «смешиваются», а сохраняются в неизменном виде из поколения в поколение.

При половом размножении связь между поколениями осуществляется через половые клетки – гаметы. Поэтому Мендель логично предположил, что каждая гамета должна содержать только один фактор из пары, чтобы при их слиянии восстанавливался двойной набор. Если при оплодотворении встретятся две гаметы, несущие рецессивный фактор, сформируется организм с рецессивным признаком (аа ), а если хотя бы одна из двух гамет будет содержать доминантный фактор, образуется особь с доминантным признаком (АА, Аа ). Основываясь на результатах своих экспериментов, Мендель сделал вывод, что наследственные факторы (т. е. в современном понимании – гены) в гибриде не смешиваются, не сливаются и передаются гаметам в «чистом» виде. В этом и состоит смысл закона чистоты гамет , который в настоящее время можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из каждой пары .

Для того чтобы понять, почему и как это происходит, надо вспомнить основные явления, происходящие в мейозе. В каждой клетке тела содержится диплоидный (2n ) набор хромосом. В результате двух делений мейоза образуются клетки, несущие гаплоидный набор хромосом (1n ), т. е. содержащие по одной хромосоме из каждой пары гомологичных хромосом. В дальнейшем слияние гаплоидных гамет вновь приводит к образованию диплоидного организма. В свете современных знаний представления Менделя о парности наследственных факторов, чистоте гамет и закономерностях расщепления легко объясняются присутствием у диплоидных организмов гомологичных хромосом, их расхождением в мейозе и восстановлением двойного набора при оплодотворении.

Цитологические основы моногибридного скрещивания. Давайте схематично представим результаты скрещиваний, осуществлённые Менделем, используя современные знания (рис. 77).

Рис. 77. Цитологические основы моногибридного скрещивания

Р (от лат. рarenta – родители) обозначает родительское поколение, F 1 (от лат. filii – дети) – гибриды первого поколения, F 2 – гибриды второго поколения, символ

– женскую особь, символ

– мужскую, знак ? – скрещивание, А – доминантный ген, отвечающий за формирование жёлтой окраски семян, а – рецессивный ген, отвечающий за зелёную окраску.

Исходные родительские растения в рассматриваемом опыте были гомозиготными, т. е. содержали в обеих гомологичных хромосомах одинаковые аллели гена. Следовательно, первое скрещивание можно записать так: Р (

Q АА ? аа ). Оба родительских растения могли образовывать гаметы только одного типа: женское растение – гаметы, содержащие ген А, мужское – а. Поэтому при их слиянии все особи первого поколения имели одинаковый гетерозиготный генотип (Аа ) и одинаковое проявление признака (жёлтые семена).

Гибриды первого поколения образовывали в равном соотношении гаметы двух типов, несущие гены А и а. При самоопылении в результате случайной встречи гамет в F 2 возникали следующие зиготы: АА, Аа, аА, аа, что можно записать так: АА + 2Аа + аа. Гетерозиготные семена окрашены в жёлтый цвет, поэтому по фенотипу расщепление во втором поколении соответствует 3:1. Понятно, что та 1 / 3 растений, которые выросли из жёлтых семян, имеющих гены АА , при самоопылении сформируют только жёлтые семена. Остальные 2 / 3 растений (Аа ) в следующем поколении вновь образуют расщепление признаков.

Вопросы для повторения и задания

1. Какое скрещивание называют моногибридным?

2. Что такое доминирование? Какой признак называют рецессивным?

3. Охарактеризуйте понятия «гомозиготный» и «гетерозиготный» организм.

4. Сформулируйте закон расщепления. Почему он так называется?

5. Что такое чистота гамет? На каком явлении основан закон чистоты гамет?

6. У человека длинные ресницы – доминантный признак. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчину с короткими ресницами. Какова вероятность рождения у них ребёнка с длинными ресницами? Какие генотипы могут быть у детей этой супружеской пары?

7. У кареглазых родителей родился голубоглазый ребёнок. Молодые родители, плохо изучавшие биологию в школе, пребывают в шоке. Объясните им ситуацию, учитывая, что карий цвет глаз – доминантный признак, а голубой – рецессивный.

Подумайте! Выполните!

1. Составьте и решите задачу на моногибридное скрещивание.

2. Применимы ли законы Менделя к наследованию признаков у бактерий? Докажите свою точку зрения.

3. Сформулируйте определения гетерозиготного и гомозиготного организмов, используя в качестве критерия сравнения число типов гамет, которые они способны формировать.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Из книги Искусственное осеменение собак автора Иванов В В

ПРОТОКОЛ ГИНЕКОЛОГИЧЕСКОГО НАСЛЕДОВАНИЯ СУКИ от ____________________200_ г.Выдан ____________________проживающему ____________________в том, что принадлежащая ему сука ____________________породы ____________________, возраст____________________прошла ветеринарную гинекологическую оценку. Ф.И.О. подпись врача ____________________

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Материальная культура и биологические закономерности Знаменательно, что наряду с мощным прогрессом в развитии материальной культуры, а соответственно и психической деятельности, с начала эпохи позднего палеолита резко затормозилось биологическое развитие человека:

Из книги Племенное дело в служебном собаководстве автора Мазовер Александр Павлович

МЕЖПОРОДНОЕ СКРЕЩИВАНИЕ Скрещиванием называют спаривание животных разных пород для получения высококачественных пользовательных, животных, быстрого изменения свойств породы и выведения новых пород.Животные, получаемые от спаривания разных пород или происходящие от

Из книги Эволюционно-генетические аспекты поведения: избранные труды автора Крушинский Леонид Викторович

О взаимоотношении наследования активно- и пассивно-оборонительных реакций По форме проявления пассивно - и активно-оборонительные реакции существенно различаются. Первая выражается в убегании животного, вторая - в нападении на пришельца. Соединение этих двух реакций

Из книги Расы и народы [Ген, мутация и эволюция человека] автора Азимов Айзек

Глава 6. Законы наследования Мендель и его горохК сожалению, наследование цвета глаз в действительности не столь уж элементарно, как это было описано в предыдущей главе. Если бы оно было таким простым, люди, возможно, заметили бы способ, с помощью которого цвет глаз

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

1.1. Основные закономерности роста и развития

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Эволюция [Классические идеи в свете новых открытий] автора Марков Александр Владимирович

Глава 6 Новые виды, или Как предотвратить скрещивание

Из книги Мир животных. Том 6 [Рассказы о домашних животных] автора Акимушкин Игорь Иванович

Закономерности и «сюрпризы» доместикации Домашние животные отличаются от диких прародителей рядом особенностей. Из внешних проявлений можно назвать, например, окраску. У диких она, как правило, единообразна для всех представителей вида, отклонения от природной нормы

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

26. Закономерности наследования. Дигибридное скрещивание Вспомните!Какое скрещивание называют моногибридным?Что такое гомозиготный организм; гетерозиготный организм?Что расходится к разным полюсам в анафазе первого мейотического деления?Закон независимого

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Доминантный тип наследования Если мутантный ген является доминантным, наличие такого гена обязательно будет проявляться у человека, который является его носителем. Чаще всего такие люди бывают гетерозиготами по данному гену, то есть один аллельный ген у них является

Из книги Генетика человека с основами общей генетики [Руководство для самоподготовки] автора

Рецессивный тип наследования Болезни с рецессивным типом наследования проявляются только у людей - рецессивных гомозигот по данным генам. Это означает, что в случае, когда клетки человека обладают только одним мутантным аллельным геном, а второй ген работает нормально,

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

Тема 4. Закономерности наследственности Не беда появиться на свет в утином гнезде, если ты вылупился из лебединого яйца. Г. Х. Андерсен (1805–1875), датский писатель Общебиологическое значение генетики вытекает из того, что законы наследственности справедливы для всех

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Моногибридное скрещивание - скрещивание форм, отличающихся друг от друга по одной паре изучаемых альтернативных признаков, за которые отвечают аллели одного гена.

Рисунок 1: Шаблон, показывающий наследование доминантных (красного ) и рецессивного (белый) фенотипов, когда каждый родитель (1) гомозиготен для доминантного либо рецессивного признака. Все члены I поколения гетерозиготны и имеют один и тот же общий для всех фенотип (2), в то время как поколение II показывает соотношение 3:1 доминантного к рецессивному фенотипам (3).

Моногенное наследование, изучаемое при моногибридном скрещивании - это наследование признака, за проявления которого отвечает один ген, различные формы которого называют аллелями . Например, при моногибридном скрещивании между двумя чистыми линиями растений , гомозиготных по соответствующим признакам - одного с жёлтыми семенами (доминантный признак), а другого с зелёными семенами (рецессивный признак), можно ожидать, что первое поколение будет только с жёлтыми семенами, потому что аллель жёлтых семян доминирует над аллелью зелёных.

Примеры

Примерами моногибридного скрещивания могут служить опыты, проведённые Грегором Менделем : скрещивания растений гороха , отличающихся друг от друга одной парой альтернативных признаков: жёлтая и зелёная окраска, гладкая и морщинистая поверхность семян, красная и белая окраска цветков и др.

Результаты

Результат моногибридного скрещивания в первом поколении - единообразие полученных гибридов (все потомки будут гетерозиготными). Результатом моногибридного скрещивания гетерозиготных потомков первого поколения будет 75 % вероятность проявления доминантного фенотипа и 25%-ая вероятность проявления рецессивного фенотипа во втором поколении гибридов (закон расщепления 3:1). Такой результат будет наблюдаться только при полном доминировании (фенотип гетерозигот Аа совпадает с фенотипом гомозигот АА). По генотипу во втором поколении гибридов наблюдается расщепление 1:2:1 (около 50% особей имеют генотип Аа и по 25% - генотипы АА и аа). При неполном доминировании (когда особи с генотипом Аа имеют фенотип, промежуточный между фенотипами гомозигот) расщепление по фенотипу во втором поколении гибридов будет совпадать с расщеплением по генотипу. Так, при скрещивании чистых линий растения ночной красавицы

Если скрещивать гибриды первого поколения, полученные так, как описано выше, т.е. от скрещивания гомозиготных форм, во втором поколении появляется расщепление . Расщепление это существование нескольких фенотипически различающихся классов в четких численных соотношениях. Оно состоит из двух компонентов: качественного, представляющего собой фенотипическое проявление признака, и количественного, заключающегося в численных соотношениях. Так, в моногибридном скрещивании во втором поколении оно составляет 3/4 особей с доминантным проявлением признака к 1/4 с рецессивным проявлением признака. Например, при скрещивании растений гороха из чистых линий, отличающихся по окраске семядолей, получается результат, изображенный на рисунке.

Или это можно описать еще так:

P АА х аа Чистые линии
Желтые Зеленые Исходные фенотипы
A a
Типы гамет
F 1 Aa
Желтые Единообразие
F 2

Расщепление по фенотипу: 3/4 желтые (А-) : 1/4 зеленые (аа)

Расщепление по генотипу: 1/4 АА: 2/4 Аа: 1/4 аа

Признак: доминантный рецессивный

Следует обратить внимание на то, что хотя рецессивный признак одного из родителей (зеленая окраска семядолей) в первом поколении не проявляется («пропал»), во втором он вновь появляется и выглядит так же, как у исходной родительской формы. Это является практическим проявлением правила чистоты гамет. Во втором поколении, которое получается в результате скрещивания гибридов F 1 между собой, появляется два фенотипических класса (желтые и зеленые семена) в строго определенном соотношении (3/4: 1/4). Это и есть расщепление, состоящее соответственно из качественного и количественного компонентов. Из анализа расщепления вытекает много важных выводов. Например, можно определить число генов, по которым формы, взятые в скрещивание, различаются, тип взаимодействия генов и аллелей.

Из схемы видно, что расщепления по фенотипу и генотипу (или фенотипическое и генотипическое расщепления ) не всегда совпадают. В приведенном примере они разные (соответственно, 3 А- : 1 аа и 1 АА : 2 Аа : 1 аа ). (Знак «» называется фенотипическим радикалом. Его можно заменить любым аллелем (доминантным или рецессивным, например, А или а , и фенотип особи не изменится)). Такая закономерность наблюдается в случае полного доминирования А над а . Однако, если аллели взаимодействуют по типу неполного доминирования и кодоминирования, они выглядят одинаково.

Если во втором поколении наблюдается фенотипическое расщепление на три класса в соотношении 1/4 АА : 2/4 Аа : 1/4 аа (или 1 АА : 2 Аа : 1 аа ), а в первом поколении — промежуточное проявление признака, речь идет о неполном доминировании одного аллеля над другим (или их взаимодействию по типу кодоминирования). К примеру, у ночной красавицы у формы АА цветки красные, у формы аа — белые, а у гетерозигота Аа (F 1) — розовые; во втором поколении расщепления по генотипу и по фенотипу будут совпадать: 1/4 АА (красные) : 2/4 Аа (розовоцветковые) : 1/4 аа (белоцветковые). Из анализа этого расщепления следует, что исходные формы (с красными и белыми венчиками) отличаются по одному гену (А ), имеющему два аллеля (А и а ), которые взаимодействую по типу неполного доминирования (или аллель А не полностью доминирует над аллелем а ).

Изложенное выше составляет суть закона расщепления в моногибридном скрещивании (или второй закон Менделя ), который гласит, что при скрещивании форм, отличающихся по аллелям одного гена, в первом поколении наблюдается единообразие, а во втором поколении появляется расщепление. При полном доминировании одного аллеля над другим получается фенотипическое расщепление на 3/4 особей с доминантным признаком и 1/4 с рецессивным, а генотипическое составляет 1/4: 2/4: 1/4. При неполном доминировании или кодоминировании расщепление выглядит 1/4: 2/4: 1/4 как по генотипу, так и по фенотипу.

Второй закон Менделя позволяет делать выводы и в обратном направлении: если при скрещивании двух особей получается одно из рассмотренных выше моногенных расщеплений (при скрещивании гибридов F1 — 3: 1, 1: 2: 1), то исходные родительские формы отличаются по аллелям одного гена. Иначе говоря, они имеют моногенное различие (по одному гену). Эта особенность закона имеет очень важное значение для проведения генетического анализа.

Таким образом, этот закон дает ключ к установлению числа генов, по которым различаются исследуемые организмы. Однако на этот вопрос можно ответить не только, скрещивая между собой гетерозиготные формы, но и проводя анализирующее скрещивание . Под ним понимают скрещивание анализируемой особи с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена. Схематически его можно записать следующим образом:

Анализирующее скрещивание позволяет установить число генов, по которым отличаются исходные родительские формы, типы и частоты образуемых гетерозиготной особью гамет, какие организмы гетерозиготны, а какие нет.
Генотипы всех особей, появляющихся в анализирующем скрещивании, определяются всегда однозначно: в случае моногибридности те особи, которые имеют доминантное проявление признака, — заведомо являются гетерозиготными, а носители рецессивного — гомозиготными по рецессивному аллелю. В анализирующем скрещивании при любых видах взаимодействия аллелей наблюдается расщепление на 1/2: 1/2. Однако одинаковые численные соотношения фенотипических классов существенно ограничивают возможности анализирующего скрещивания: поскольку гетерозиготы и гомозиготы количественно не отличаются, установить, какой признак является доминантным не представляется возможным. Ответ на данный вопрос можно получить обратитившись к скрещиванию гетерозигот (F 2).

Проработав эти темы, Вы должны уметь:

  1. Дать определения: ген, доминантный признак; рецессивный признак; аллель; гомологичные хромосомы; моногибридное скрещивание, кроссинговер, гомозиготный и гетерозиготный организм, независимое распределение, полное и неполное доминирование, генотип, фенотип.
  2. С помощью решетки Пеннета проиллюстрировать скрещивание по одному или двум признакам и указать, каких численных отношений генотипов и фенотипов следует ожидать в потомстве от этих скрещиваний.
  3. Изложить правила наследования, расщепления и независимого распределения признаков, открытие которых было вкладом Менделя в генетику.
  4. Объяснить как мутации могут повлиять на белок, кодируемым тем или иным геном.
  5. Указать возможные генотипы людей с группами крови А; В; АВ; О.
  6. Привести примеры полигенных признаков.
  7. Указать хромосомный механизм определения пола и типы наследования сцепленных с полом генов млекопитающих, использовать эти сведения при решении задач.
  8. Объяснить, в чем заключается различие между признаками, сцепленными с полом и признаками, зависимыми от пола; привести примеры.
  9. Объяснить, как наследуются такие генетические заболевания человека как гемофилия, дальтонизм, серповидно-клеточная анемия.
  10. Назвать особенности методов селекции растений, животных.
  11. Указать основные направления биотехнологии.
  12. Уметь решать по данному алгоритму простейшие генетические задачи:

    Алгоритм решения задач

    • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А - доминантный а - рецессивный.
    • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
    • Запишите генотип гибридов F1.
    • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
    • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Схема оформления задач.

Буквенные обозначения:
а) доминантный признак _______________
б) рецессивный признак _______________

Гаметы

F1 (генотип первого поколения)

гаметы
? ?

Решетка Пеннета

F2
гаметы ? ?
?
?

Соотношение фенотипов в F2: _____________________________
Ответ:_________________________

Примеры решения задач на моногибридное скрещивание.

Задача. "В семье Ивановых двое детей: кареглазая дочь и голубоглазый сын. Мама этих детей голубоглазая, но ее родители имели карие глаза. Как наследуется окраска глаз у человека? Каковы генотипы всех членов семьи? Окраска глаз - моногенный аутосомный признак".

Признак окраски глаз контролируется одним геном (по условию). Мама этих детей голубоглазая, а ее родители имели карие глаза. Это возможно только в ТОМслучае, если оба родителя были гетерозиготны, следовательно, карие глаза доминируют над голубыми. Таким образом, бабушка, дедушка, папа и дочь имели генотип (Аа), а мама и сын - аа.

Задача. "Петух с розовидным гребнем скрещен с двумя курицами, тоже имеющими розовидный гребень. Первая дала 14 цыплят, все с розовидным гребнем, а вторая - 9 цыплят, из них 7 с розовидным и 2 с листовидным гребнем. Форма гребня - моногенный аутосомный признак. Каковы генотипы всех трех родителей?"

До определения генотипов родителей необходимо выяснить характер наследования формы гребня у кур. При скрещивании петуха со второй курицей появились 2 цыпленка с листовидным гребнем. Это возможно при гетерозиготности родителей, следовательно, можно предположить, что розовидный гребень у кур доминирует над листовидным. Таким образом, генотипы петуха и второй курицы - Аа.

При скрещивании этого же петуха с первой курицей расщепления не наблюдалось, следовательно, первая курица была гомозиготной - АА.

Задача. "В семье кареглазых праворуких родителей родились разнояйцевые близнецы, один из которых кареглазый левша, а другой голубоглазый правша. Какова вероятность рождения следующего ребенка, похожим на своих родителей?"

Рождение у кареглазых родителей голубоглазого ребенка свидетельствует о рецессивности голубой окраски глаз, соответственно рождение у праворуких родителей леворукого ребенка указывает на рецессивность лучшего владения левой рукой по сравнению с правой. Введем обознанения аллелей: А - карие глаза, а - голубые глаза, В - правша, в - левша. Определим генотипы родителей и детей:

Р АаВв х АаВв
F, А_вв, ааВ_

А_вв - фенотипический радикал, который показывает, что данный ребенок с левша с карими глазами. Генотип этого ребенка может быть - Аавв, ААвв.

Дальнейшее решение этой задачи осуществляется традиционным способом, путем построения решетки Пеннета.

АВ Ав аВ Ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ АаВв
ав АаВв Аавв ааВв Аавв

Подчеркнуты 9 вариантов потомков, которые нас интересуют. Всего возможных вариантов 16, поэтому вероятность рождения ребенка, похожим на своих родителей равна 9/16.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 10. "Моногибридное и дигибридное скрещивание." §23-24 стр. 63-67
  • Тема 11. "Генетика пола." §28-29 стр. 71-85
  • Тема 12. "Мутационная и модификационная изменчивость." §30-31 стр. 85-90
  • Тема 13. "Селекция." §32-34 стр. 90-97


top